AD-R166 981 A COMPUTABILITY THEORY FOR DISTRIBUTED SVSTEHS(U) TEXAS
UNIV AT AUSTIN DEPT OF COMPUTER SCIENCES J MISRA
13 MAR 86 N9BO14-85-K-00857

UNCLASSIFIED

:
[
[
:
i
==

Lo

.
i

s |||||§

EY T

o
FEEER

EEEE
ERE

FEEE

-——
3
-—
E

[

(13

o

=
N
01
g

MICROCOPY RESOLUTION TEST CHART
—— NATIONAL BUREAU OF STANDARDS ~ 1963 - A

. \ h l
' ’1 'i L4 Ay g 'a‘;'B ;‘o’ e |'nl Vi ..Q‘q.\ 'h‘s' ") a.. N , :' ‘l e ’b\,‘i‘g W 0.‘ D g‘m [N u i \Q‘l 5'0.;

AD-A166 081

Final Technical Report

v s v = —r g2 =

Navy Grant N00014-85-K-0057

Office of Naval Research

A Computability Theory for Distributed Systen

DEPARTMENT OF COMPUTER SCIENCES
THE UNIVERSITY OF TEXAS AT AUSTIN

Lt GOPY

Hii

AUSTIN, TEXAS 78712

" DISTAIBONION STATEMENT A

Approved for public release;
Distribution Unlimited

G-

LNt .'7 . . W . X ‘ N . Sy t? ; WP ~, P YN] .
,‘h‘,l‘: ‘3}‘-‘". e 93'..‘1,1 (R ‘h f‘-‘h b, ""] .5-.‘ Q .‘i"":"l‘ :‘%:\"‘l‘"o ia‘!' A .l\"’b"h..h !::."S‘li .: ' i'*.ﬁ &hm‘j

TS e
"j,‘gf!; AR ,1.?»

-

4
9y

X2

o,

Final Technical Report

Navy Grant N00014-85-K-0057

Office of Naval Research

A Computability Theory for Distributed Systems

Principal Investigator: Jayadev Misra

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

March 13, 1986

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

Ko s
ra Xy .

MG ERMR , T AT : 1Y 000 AR LA W
A0SR ORA0ACRIL At ittt bt TN AN NN R S N AR

~———

i oo 1.0 S
v Final Report: N00014-85-K-0057 -) ro1.°
~. Summary of Work Accomplished

.~
—

K The work proposed

T this grant was to develop theories which will contribute
to the design and ysis of distributed systems. The major emphasis of the proposed
research was tostudy how and why processes in a message passing system need to com-
municate.~The research results have far exceeded our initial expectations: in the following
pages we describe the summary of the work performed and what these results imply for
the development of distributed systems. There have been two journal papers (Distributed
Computing, Springer- Verlag), one conference paper (Symposium on Principles of Program-
ming Languages '86), and several technical reports published under this grant.

Bz

-~
.

How Processes Learn [4,1]

R R

Processes in diztributed systems communicate with one another exclusively by sending
and receiving messages. A process has access to its state but not to the states of other
processes. Many distributed algorithms require that a process determine facts about the
overall system computation. In anthropomorphic terms, processes “learn” about states
of other processes in the evolution of system computation. This work is concerned with
how processes learn. We give a precise characterization of the minimum information flow
necessary for a process to determine specific facts about the system.

L B

The central concept in our study is that of isomorphism between system computa-
tions with respect to a process: two system computations are isomorphic with respect to
a process if the process behavior is identical in both. In anthropomorphic terms, “sys-
tem computations are isomorphic with respect to a process,” means the process cannot
distinguish between them.

2 e

Many correctness arguments about distributed systems have the following operational
flavor: “I will send a message to you and then you will think that I am busy and so
you will broadcast ...”. Such operational arguments are difficult to understand and error
prone. The basis for such operational arguments is usually a “process chain”: a sequence
of message transfers along a chain of processes. We advocate nonoperational reasoning.
The basis for nonoperational arguments is isomorphism; we relate isomorphism to process
chains. Algebraic properties of system computations under isomorphism provides a precise
framework for correctness arguments.

= A,

>>A

It has been proposed that a notion of “knowledge” is useful in studying distributed
computations. In earlier works, knowledge is introduced via a set of axioms. Our definition
of knowledge is based on isomorphism. Our model allows us to study how knowledge is
“gained” or “lost”. One of our key theorems states that knowledge gain and knowledge loss
both require sequential transfer of information: if process ¢ does not know fact b and later,
p knows that ¢ knows b, then ¢ must have communicated with p, perhaps indirectly through
other processes, between these two points in the computation; conversely, if p knows that ¢
knows b and later, ¢ does not know b then p must have communicated with g between these 3
two points in the computation. In the first case, the effect of communication is to inform

s

e

'
B
3
)

L -

|
=< ved

bl G FOCTNICITNEC A o O YY) 7 AR IR Y s W L R TP (R MR
““‘f‘.ﬂ:":"tt”otﬁkf' ‘ e AR AN A,’z\ﬂ A o8 n"."ail.‘.\'v‘a .*"t‘.%k'zwl‘a‘l AL DI AR OC DOV

WA

¥

. Final Report: N00014-85-K-0057 2

™~
—
a5 2

igf‘ p of ¢’s knowledge of b. Analogously, in the second case, the effect of communication is to
- inform ¢ of p’s intention of relinquishing its knowledge (that ¢ knows b). Generalizations
of these results for arbitrary sequences of processes are stated and proved as corollaries of
' a general theorem on isomorphism.

L K
o o~
=2 R

We use the results alluded to in the last paragraph for proving lower bounds on the
number of messages required to solve certain problems. We show, for instance, that there
is no algorithm to detect termination of an underlying computation using only a bounded
number of overhead messages.

1
:

o We have extended this work in [1] to deduce facts from incomplete information.

Reaching Agreement in Faulty Distributed Systems [2,3]

Reaching agreement in a faulty distributed system, also known as Byzantine agree-

W ment, has been a central problem in fault-tolerant distributed computing. Our interest in
:5;? g studying this problem was to develop theories and conditions for fault tolerance in var-
1 B ious different situations. We studied an important algorithm due to Fischer, Lynch and
s Fowler (“A Simple and Efficient Byzantine Generals Algorithm,” Proceedings of the 2nd
o L-Zé Symposium on Reliability in Distributed Software and Database Systems, July, 1982) and
i"y g proposed a proof of it along traditional lines of program proving. This work has resulted in
E ' a very compact version of this algorithm. Another important result, again due to Fischer
* i and Lynch, shows that agreement requirements synchrony: in an asynchronous system,
¢ agreement on a common value cannot be reached even if only one process fails. We pro-
:ﬁ;z) vided a proof of this result using a set of simple axioms. Our proof also includes a number
:::‘ g of key lemmas and clarifies the relationship between agreement and decision making by a
::: process.

':;'; & An Abstract Concurrent Model and Its Temporal Logic [5]

»

:':E:’ ﬁ {The work of Professor Pnueli was supported by this grant}

& We advance the radical notion that a computational model based on the reals provides
Ry ’E a more abstract description of concurrent and reactive systems, than the conventional
;s:; : integers based behavioral model of execution sequences. This model is studied in the
‘:’ﬁ setting of temporal logic, and we illustrate its advantages by providing a fully abstract
:éﬁ 3 temporal semantics for two simple concurrent languages, and examples of specification
- and verification of concurrent programs within the real temporal logic defined here. It is
“‘ N shown that, by imposing the crucial condition of finite variability, we achieve a balanced
W g:» formalism that is insensitive to finite stuttering, but can recognize infinite stuttering, a
:': 7 distinction which is essential for obtaining a fully abstract semantics of nonterminating
:::, processes. Among other advantages, going into real-based semantics obviates the need for
Ly E‘ the controversial representation of concurrency by interleaving, and most of the associated
N fairness constraints.

a4

WL W 5o e 20 CHICARRLIC L) . R LY. N0 N R P o T T K YOO B M R M TIER RN
s v".r&?"w‘.’:,' s '?“h.&;‘.“‘;" . 1!9:‘? ‘.‘_i‘.t.),‘#‘!, WHESD, u‘ At A n,.-: ity i"ﬂ‘l’!“t. s‘qﬁ‘&‘-‘!ﬁ“‘ﬂ."rﬁ‘@s e‘ 0“‘-‘\ ‘ils“f!"“ Q!Lﬂ'& LI “.I"' “‘ﬂ'iﬁ"

ad

Final Report: N00014-85-K-0057 3

R

Systolic Arrays as Programs (6]

-~

Systolic algorithms represent a form of parallel programming in which a number of
nodes (machines) are interconnected by a set of lines. A node reads from its input lines
and writes into its output lines on specific clock pulses and there are only a few kinds of
nodes each doing different kinds of processing. Systolic algorithms are typically described
by pictures of the interconnections of nodes, descriptions of processing at each node in -
the picture and data movements among nodes at several successive steps. A pictorial
representation guarantees that the algorithm can be implemented on a VLSI chip without :
wire crossings, for instance. However, a picture makes it difficult to argue about the J
correctness of the algorithm, explore alternate designs or even develop an algorithm in a
systematic manner.

B e e

We propose to view systolic algorithms as programs and hence, apply traditional pro-
gram development techniques, based on invariants, in their design. We carry out the

developments for matrix multiplication of band matrices and L-U decomposition of a band
matrix.

B3 = 22 &R

& K2R

T
- -

Accesion For \
NTIS CRA&)
O
O

o S0

DTIC TAB
Unannounced
Justification

By m-rv e AL......- |

Distribution | »

Ry

KX

-

Availability Codes

e e - o ERARE—]
Avail and/or
Dist Special

X ey Ao, B

L. oo

R

e

".."(RN P Lo als

50 "’!Il""c R
st o0 ? ,,l‘ it zl‘ W ’,l: ol (20 l..’ ‘,.l‘o l.@ l‘»‘ W .0"." » mﬁ,‘.t‘.“,.c W MR 'i, KN a,

B X 25 8

"

W

alh 22 B

i ":lj

Wl e AN AN R e f"‘ R e e e D et R

Final Report: N00014-85-K-0057 ' 4
Technical Reports

(1) “Learning from Incomplete Information,” Technical Report, Department of Computer
Sciences, University of Texas, September 1985, (K. Mani Chandy and Jayadev Misra).

(2) “Understanding a Byzantine Algorithm,” TR-85-20, Department of Computer Sci-
ences, University of Texas, September 1985, (Jayadev Misra).

(3) “On the Non-existence of Robust Commit Protocol,” Technical Report, Department
of Computer Science, University of Texas, November 1985, (K. Mani Chandy and
Jayadev Misra).

Publications

(4) “How Processes Learn,” Proceedings of the Fourth Annual ACM Symposium on Prin-
ciples of Distributed Computing, Minaki, Ontario, Canada, August 5-7, 1985. Also
appeared in Journal of Distributed Computing, Vol. 1, No. 1, pp. 40-52 (Springer-
Verlag), (K. Mani Chandy and Jayadev Misra).

(5) “A Really Abstract Concurrent Model and its Temporal Logic,” Proceedings of the
Thirteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-

ming Languages, St. Petersburg, Florida, January 13-15, 1986, pp. 173-183, (Howard
Barringer, Ruurd Kuiper and Amir Pnueli).

(6) “Systolic Algorithms as Programs,” to appear in the special issue on VLSI, Journal of
Distributed Computing, Vol. 1, No. 3, (K. Mani Chandy and Jayadev Misra).

(%)

e -

N 0 ,‘ .r
¥ :‘il.a'lf%'l?l i

]

® [4 »
Learning from Incomplete Information é{.’
(Extended Abstract)

K. Mani Chandy ;;i:g&h
Jayadev Misra il t:r:

Department of Computer Sciences #
The University of Texas Sy
Austin, Texas 78712
(512)471-4353

12 September 1985

This work was supported by a grant from the Office of Naval Research under grant
number ONR NO00014-85-K-0057.

i ()
) Ty » OO OODCAIOUO, VAt . o x¥. OUCP, ; N 00K
h“"‘;ﬂ‘ ‘.“l,‘.h“ ‘:'t‘«’; »"’:'ﬁ'.'f" a.:'l.t‘:".'vi-.-," : ’j"‘c"‘}".‘, 3.‘1 J¥ ,:‘.h 't.' .\"‘.‘5’ (R é l‘.'..l.’?l'» l'ln.i'a‘t'o ‘i‘l' 2X 1!. ..“‘na .i’.!’-ﬁ’!&"

3

v 28 X e

S

*"When you have eliminated the impossible, whatever remains, however im-
probable, must be the truth.*!

Introduction

Deduction, according to Holmes, is based upon: (1) plausibilities, (2) clues, and (3)
elimination of impossibilities given the clues. Holmes starts his detection with a set of
possible scenarios, i.e., a model of the crime. Then he gathers clues and eliminates
scenarios that are incompatible with his clues. Our view of knowledge is similar. We
start with a model (set of possible scenarios), we make certain observations of the sys-
tem and thereby, we eliminate scenarios that are incompatible with the observations. In
this paper, we are concerned exclusively with deduction, i.e., elimination of scenarios in-
compatible with observations. We do not address the question of how the model is pos-
tulated in the first place, nor with methods for making observations.

For a variety of reasons, one cannot always observe everything one wants to.
Deductions are necessary precisely because observations are often incomplete. For ex-
ample, reasons for an aircraft crash has to be deduced from the information in voice
and data recorders, control tower recordings and memories of survivors. Software is
debugged by collecting values of certain key variables over some points in execution and
this partial observation may enable a programmer to deduce that the program has an
error, i.e.,, program behavior is incompatible with a correct implementation. Fault
detection and location in electronic circuits are often carried out by observing the volt-
age levels on some specified lines; it is usually too expensive to probe all lines. A design
task is to identify the lines that may be probed and make those lines accessible. This is
akin to deciding, at the design stage, what must be observable to gain certain kinds of
knowledge. We propose a model of computation which captures the essence of partial
observations.

Given a partial observation, all scenarios that could have produced that obser-
vation are isomorphic with respect to that observation; all other scenarios can be
eliminated from further consideration. In general, if more is observed, more scenarios
can be eliminated and hence more knowledge about the system can be gained.

We propose a general model of discrete systems in terms of events and relation-
ships among them. Our model appears to be general enough to encompass all known
distributed systems including the usual message passing and shared variable models.
We define the notion of isomorphism among computations with respect to a process,
i.e.,, two computations are isomorphic with respect to a process, if the process cannot

lSherlock Holmes in The Sign of the Four, [Chapter 8], by Sir Arthur Conan Doyle, [1890].

»f TRAPNELVE WL N S] MMM
N S v, et nd h"'ﬂ."": "‘-.‘f"a‘»"i;i%l

adiaa diie Ata hie ate dla Ale dte his & --.]

g distinguish between the two computations. Our fundamental theorem relates isomor-
‘ phism to communications among processes in a computation. We define knowledge
using isomorphism and show the types of communications needed to gain or lose
l knowledge. We postulate that some pairs of events on a process may not be distin-
guishable to it. Thus, a process may know that a certain type of event has occurred,
but it may not be able to say which particular event of that type has occurred. This is
§ a mechanism for capturing the notion of partial observation.

ﬁ Model

A system is a set of events E and two binary relations — and ~ on events,
2 where — is a partial order and ~ is irreflexive and symmetric. A computation is any
B sequence of events z satisfying the following two conditions. For any e,e’ in E:

1. precedence: if ¢ — ¢’ and ¢’ is in z then e occurs prior to ¢’ in z.

2. exclusivity: if ¢ ~ ¢’ than at most one of e,e’ is in z.

e 3
s

An event represents a discrete action; ¢ — ¢’ means that event ¢’ can occur only
after event ¢ has occurred; ¢ ~ ¢’ means that both e,e’ cannot occur in the same com-
putation. Note that,if e — ¢’and e ~ e’ then e’ can occur in no computation.

Our definition of system is given independent of the processes at which an event
may take place. A number of important properties of computations, such as prefix
closure etc., may be proven from our definition. However, an adequate theory of
knowledge requires us to postulate processes which are not omniscient. We do so next.

Each process has a set of invisible events; these are the ones in which it presum-
ably does not participate and whose occurrences it cannot observe; remaining events are
visible to it. Furthermore, a process may be unable to distinguish between some of its
visible events; this captures the notion that what a process can observe is an abstraction
of the events in the underlying computation. Formally, a process is a pair (A,/7) where
A CFE and IT is a partition of A. Only the events in A are visible to the process and
the partition I7 groups events in A into equivalence classes such that all events in an
equivalence class are indistinguishable to the process. A process can only observe the
equivalence class to which a visible event belongs, but not the event itself.

x

o We note that an event may be visible to several processes; this denotes that the
event is to take place simultaneously at all these processes. Furthermore, two events
may be indistinguishable to a process p and distinguishable to another process ¢. We

E can model usual message passing systems by considering both active processes and chan-

) nels as processes in our system. Similarly, shared variable systems may be modelled by
:'f ;83 considering active processes and shared variables as processes. It is impgrtant to note
o that we can define any pair (A,IT) to be a process. Our choice is dictated by what kinds

of knowledge we wish to study. For instance, if we want to deduce the operation of a

w—'w-v‘.“:*-x-m‘lv'T

me
w

message passing system from the messages transmitted in the system, we will consider
the channels (along which messages are transmitted) as processes.

Notation:: Unless otherwise stated, we use z,y,z to denote computations and p,q,r for
processes; these symbols may be used with superscripts or subscripts also. The con-
catenation of sequences z and y will be denoted by (z;y). For sequences z,yx < y
denotes that z is a prefix of y; in this case (z,y) denotes the suffix of y obtained by
deleting = from y. The empty sequence will be denoted by null.

The following example demonstrates how a process may be unable to distinguish
some of its visible events.

Example

2

A mutual exclusion algorithm between two processes p,q is implemented by means
of a token: only the process holding the token may enter a critical section. The deci-
sion by a process to enter its critical section is nondeterministic. If the token holder
wishes to enter its critical section then it does so and sends the token to the other
process upon completion of the critical section execution; if it decides not to enter the
critical section, then it sends the token to the other process immediately. A portion of
the system is shown in figure 1.

i

R S

ﬁ The set of events E = {a,b,¢,d,e}. The relation — is {(a,c), (¢,d), (a,d), (b,e)} and
the relation ~ is {(a,b), (b,a)}. The important point to note is that the process receiv-

ing the token, i.e., with visible events d and ¢, cannot deduce whether the other process

f.?, did enter its critical section prior to sending it the token, i.e., events d,e are indistin-
VR guishable to this process. Hence this process is defined by (A,/7) where A = {d,e} and
1T = {{d,e}}. The process sending the token is ({a,b,c}, {{a}, {6}, {c}}). The process

! receiving the token views the receive as a single event, yet we model it as two distinct

events d,e and represent the fact that the process cannot distinguish between them by
having them in the same equivalence class.

Results

We simplify the discussion of distinguishability by assuming that each process has
an associated set of colors, one distinct color for each equivalence class in its partition
and distinct processes have no common color. Every event has all the colors of the
various equivalence classes that it belongs to, corresponding to the processes to which it
is visible. In any computation z, a process p cannot observe the invisible events and for
\ each visible event it can only observe the color of the event. This is captured in the fol-
& lowing definition.

oA

3
s

—~-
3
@

of colors of the visible events of p in z.

ﬁ Definition:: For a process p and a computation z, p’s observations of z_js the sequence

A
,%\ e (receive

! - token

send
O token

ik
S
| o

process
holding the token

process

v

A

|
i
|
!
|
|
[
|
1

>
without the token

¥igure 1:

All of our definitions and results are easily generalized when individual processes
are replaced by sets of processes. This is because, processes {p,q} together form a
process whose visible events are the ones visible to either p or ¢ and two visible events

e %\ of this process are indistinguishable if and only if they are visible and indistinguishable
:.i to both p,q.
ey
?,:Go;. f Definition:: A sequence z has a process chain <p,q,...,r> if and only if there exists a
et subsequence of events, ee’,...,e”, not necessarily distinct, in z such that (1)
v e —+e' —.—e"and (2) eison p, ¢’is g,...,e" ison r.
\ /;]L% g A process chain as above indicates that in the given computation p informs g and
Rt later ¢ informs ...,r is informed.
:::: }‘_L‘ Definition:: For any process p, [p] is an equivalence relation between computations
o AW defined as follows:
&
i :
:_'o_.'; E z [p] y means p’s observations of z = p’s observations of y. —_—

k]

YA A" R ™A™

. . ! LS

AN
‘?‘“‘

§
:
3
¢

<
§

r

-

k™o

"
¥
g

e

KrE

Intuitively, z [p] y, to be read as z is isomorphic to y with respect to p, means that
p cannot distinguish between computations z,y. Isomorphism is the basis for our work;
p’'s knowledge of the system has to be identical for both z,y.

Definition:: z[pq...r] y means there exists z such that,

z[p}zand z[g...7] y.

Intuitively, z [p g] y denotes that there is a computation z which p cannot distin-
guish from z and ¢ cannot distinguish from y. The relation [pgq] is the relational
product of [p] and [g]. This is generalized to arbitrary sequence of processes in
z[pg...r]y. A number of algebraic properties of isomorphism relations appear in [1].
Next, we present our fundamental theorem which relates process chains and isomor-
phism relations.

Theorem 1: (Fundamental Theorem) Let x < y. For any sequence of processes
p,g,...,7, there is a process chain <pgq...r> in (z,y)or z[pg...7] v.

Process chains capture our intuitive notion of information transfer among
processes. The theorem given above allows us to consider information transfer (or its
absence) in algebraic terms using only isomorphism relations. In fact, our theorems
about knowledge gain and loss are corollaries of this theorem. This theorem can be
strengthened when every visible event of a process has a unique color, i.e., when a
process can distinguish among all its visible event.

Theorem 2: Let p,q,...,r be processes which have unique colors for all their visible
events, i.e., every equivalence class for each of these processes has exactly one event in
it. Then, for any z,y where z < y, z[pgq..r] ¥ if and only if there is no process chain
<pgq..r> in (z,y).

Now, we define knowledge predicates. Let b be any predicate whose value at a
computation z is, b at z. We define a predicate p knows b.

Definition:: (p knows b) at x = for all y: z[p]y : b at y.

Intuitively, p knows b at z if b is true for all computations which p cannot distin-
guish from z.

Note that b may itself be a knowledge predicate. The knowledge axioms appear-
ing in [2] may be derived from this definition. It may be easily seen-that (p knows
(g knows b)) at z = for all y: z[pgly:b at y.

. P ¢ Iy W el i’ A A A B R AR LR *-\- " ,_-‘\- NN LT L e
. ,u(m & L&&M &C& l'f‘ﬁ{‘!;;\,'\’:;:‘;{\"\.' \t&t m&iu'.‘g,‘!.h}m;mf

ity

Notation:: We write,

[R

p knows ... ¢ knows b, to stand for, (p knows ... (g knows b))

e

Our next theorem shows that knowledge can be gained or lost only in a sequential
manner.

R i

Theorem 3: (p knows ... ¢ knows b at z and z [p ... g] y) implies ¢ knows b at y.

Ao o

=, (o
Nt

Observe that z,y are arbitrary computations and p,...,q are arbitrary processes in
the above theorem. If z < y, p knows ... ¢ knows b at x and ~q knows b at y, then
knowledge is lost and the theorem shows that ~z[p...qjy. Using the fundamental
theorem, we then deduce that there is a process chain <p...¢> in this case. Hence
knowledge can be lost only by p informing the next process in the chain (of its intention
to lose knowledge of b) which informs the next process, etc., until g is informed and ¢
loses its knowledge of b. If y < =z, ~q knows b at y and p knows ... q knows b at z,
then knowledge is gained and the theorem then tells us that ~xz[p...g]y. Using al-
gebraic properties of isomorphism relation this leads to ~y [g... p] ¥ and then using the
fundamental theorem, there is a process chain <gq...p> in (y,z). Therefore, knowledge
is gained in a sequential manner in the reverse direction, ¢ gaining knowledge of b and
] then informing the previous process in the chain of its knowledge of b,...,p gaining
v knowledge of b by being informed by the process ahead of it in the process chain.

)

R

Py

=_ T2 &

el e e R

This theorem gives a lower bound not only on the numbers of message transmis-
sions but also on the lengths of the process chains. All the results in [1] may be
similarly proven for the general model proposed in this paper. We sketch two new
! results.

.,
A
iR

K-Way Common Knowledge

-
.
L -

The notion of common knowledge, as used here, is from Halpern and Moses [2].

Y They showed the impossibility of achieving common knowledge in a system which ad-
VL . :

IR mits of no simultaneous events. We prove a stronger result: we show that if every
;; , event is visible to k or fewer processes, k£ > 0, then common knowledge among £ + 1
3 % processes cannot be gained or lost.

3 G The predicate, P has common knowledge of b, where P is a set of processes and b
% K is a predicate, has a value equal to the following expression at any computation z:

R % (b at z) and (for all p in P. p knows b at z) and —_—

(for all p,g in P. p knows q knows b at z) and ...

‘- N > “» Wr a) T‘}\ ‘-f\‘.'-'\.‘-*'- .\J\ . -..\”i
'l"!!e‘.l U ‘:“4.‘ 0 B W N, "’. L) !‘n al " " .\ ") \ -~ .' }

AT, ATE AT N R TN A T R R B LN A R ot

-

It follows that, for any p in P,

P has common knowledge of b = p knows P has common knowledge of b.

- -

Let every event ¢ in a system be visible to at most k processes, i.e., no event oc-
curs at more than k processes simultaneously. Then, we will show that for any P whose
cardinality exceeds k£ and any predicate b, P has common knowledge of b is a constant
predicate, i.e., it holds at all computations or its negation holds at all computations. In
other words, no nontrivial common knowledge can be gained or lost. In particular, two-
way communication is inadequate for achieving three-way synchronization and gatning
knowledge by each party about each other’s knowledge about the synchronization.

=

Theorem 4: Let every event in a system be visible to at most k& processes and let P be
a set of more than k processes. For every predicate b, P has common knowledge of b, is
a constant predicate.

B TR B

Proof (sketch): We show that,

P

P has common knowledge of b at z =

P has common knowledge of b at null.

L3

Proof is by induction on length of x. Base step is trivial. For the inductive step, we
need to show that for any computation (z;e),

Sy
o

P has common knowledge of b at x == P has common knowledge of b
at (z;e).

From the premise of the theorem, there is some process p in P to which event e is in-
visible. Hence,

A xS OB

z [p] (zse).

Therefore, p knows b’ at £ = p knows b’ at (z;e), for any b’. Letting b’ be, P has com-
mon knowledge of b, and using the fact that,

v 2
_}%

P has common knowledge of b = p knows P has common knowledge of b,

=

the desired result follows.

The next result was suggested to us by Amir Pnueli. We show that all processes
in an asynchronous message passing system can never agree that all channels are empty
unless they are empty at all computations, i.e., they are initially empty and no process
sends a message in any computation. A formal model of asynchronous message passing
systems appears in [1] from which the following can be easily derived.

Let b be the predicate that all channels are empty. Then, ~q knows b at z and ¢
knows b at (z;¢) = ~b at z. Intuitively, if g gains knowledge of channel nonemptiness,
it does so only by receiving a message (event ¢) and hence some channel was nonempty
at . Now we can prove:

Theorem 5: Let D denote the set of processes in an asynchronous message passing sys-
tem in which some process sends a message in some computation. Let b be the predi-
cate that all channels are empty. Then, for all p in D: p knows b, never holds.

Proof (sketch): If not, then there is a computation (z;e) and process ¢ such that ~gq
knows b at z and for all p in D: p knows b at (z;¢). Event e is a message receive on g.
Therefore, there is a process r, r £ g, such that

z [r] (zse)

Hence, r knows b at z, because r knows b at (z;e). From, ~g¢ knows b at x and ¢ knows
b at (z;e), we have ~b at z, which contradicts, r knows b at z.

In some sense, the simplest nontrivial knowledge that a process can acquire is
whether an invisible event ¢ has occurred. A process has this knowledge if and only if it
knows that its observation includes a visible event ¢’ where e — ¢’. It follows that ter-
mination of one process p cannot be detected by another process g, because the event
causing termination in p has no successor (¢ — ¢’ means e’ is a successor of ¢) in ¢.

When each event has a unique color, the question of whether an observation in-
cludes ¢/, as above, is readily settled: we simply decide for each event in the obser-
vation whether it is a successor of e. However, introduction of colors makes this
problem more difficult; we show that the problem is equivalent to answering whether an
observation can occur in a system.

Theorem 8: Let z be a computation in system S and e be an invisible event of p.

p knows e has occurred at z = there exists y in S/, z [p] y, where S’
is a system derived from S by deleting all ¢/, ¢ — ¢’

bbb A b b

P

Y L i . SN LA, S LA (LY .t '» 'y . . b Yl
DL LN AN } W0 ...4,1‘3,4",“ ‘.’i‘nﬁ. % .F‘.‘ L) '-. AR 4 ﬁ.‘sl sﬁ'o, 0 \?! l‘;‘; el t,l\,)_ ;J’lﬁ\

I LY

»

P

a Tz W%

DA 3 O Ak AL RIOS 40 AT AN IR WAL LI S) ARG At L ATREA Y
SRS .\0?:':‘:!:‘4'.' XAR AL !’,\"‘»‘.r"’ v .‘.vc,*“‘,m 3 ;'.'fi?f.l‘w!“!Qt'af\':.'i'u!\‘.'t'.'t A o':?t‘ﬁt A JORRMR KX M OO .i'* G ISR

Acknowledgement

We are immensely indebted to Professor Amir Pnueli for stimulating discussions
about the "right" model for distributed computing. Professor C.A.R. Hoare's en-
couragement and advice about a more algebraic approach, is deeply appreciated.

References

1. Chandy, K. Mani and Misra, Jayadev, "How Processes Learn," Proceedings
of the Fourth Annual ACM Symposium on Principles of Distributed
Computing, Minaki, Canada, August 5-7, 1985 and Distributed Computing,
Vol. 1, No. 1, 1985, (Springer-Verlag Publishing Company).

2. Halpern, Joseph Y. and Moses, Yoram, "Knowledge and Common
Knowledge in a Distributed Environment," Proceedings of the Third Annual
ACM Symposium on Principles of Distributed Computing, Vancouver,
Canada, August 27-29, 1984.

b s Baa o g

e e Vet e Vo i e 0

WA S

SRS)

Y [

. R S W

UNDERSTANDING A BYZANTINE
ALGORITHM

J. Misra
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

TR-85-20 September 1985

ety

-

Bk

This work was supported in part by a grant from the Office of Naval Research under
grant ONR NO00014-85-K-0057.

. :; A."
L}
]
1]

N

§

G 10 MR e ,,\' 0 X) % 0 0 " . 3 ‘ . _7 . .
AR AR RN R NOOI UK NN STOSORRSAIBHTALA SOl TOCOGIIANESIAING TN D)

Understanding a Byzantine Algorithm

K. M. Chandy
J. Misra
University of Texas

Introduction

The problem of Byzantine Agreement defined in [1] is as follows. There are N
processes any pair of which may communicate by messages. Any message sent is
received instantly and correctly by the recipient. It is given that exactly t of the
processes are faulty and the rest, N-t, are reliable. Each process is initially off or on.
The problem is to devise a scheme whereby all reliable processes agree eventually on a
common value, 0 or 1. Furthermore, the common value is 0(1) if all reliable processes

;;u: are initially off(on). Difficulty arises due to the nature of faulty processes: they may
)

",:: provide conflicting information in a concerted manner to thwart agreement by reliable
¢ processes.

We discuss an ingenious algorithm for this problem appearing in literature [2]. This
note is intended as a different, and hopefully simpler, exposition of this algorithm and
its proof. We believe that simplification is achieved by removing explicit message
communication from the algorithm description. It should be easy to see how our
scheme may be implemented using synchronous message communications. Our proof
closely follows [2] though the restructuring results in some simplification.

ST

,.
3

hoos
e Y o=
o

It is known that solutions for this problem exist only if N > 3t + 1. We assume that
N=3t+1 and t > 0. Let low=t+1 and high=2t+ 1; therefore high is the

“a
-
oy

::: i number of reliable processes. Observe that every subset of low processes has at least

RN

~::f & one reliable process and every subset of high processes has at least low reliable
processes.

o

‘§r g Algorithm

We represent states of processes and their communication histories by a colored directed

graph. Every vertex corresponds to a distinct process and a vertex state is off/on

denoting the current state of the process. An edge (s,5) is directed from process 1 to j,
=- 3 7% j, and has a color, black or white. '

\

Initially, there are no edges in the graph and a vertex state is the correspoading process
state. The algorithm proceeds in rounds where during the first part of a round
processes note the states of all other processes and edges that are present in the graph.

g
! f

t P, N AT A TN AL D T . QT BN SN \
AR U A T AN NS E X ANRT LRI 0, T L TU O AR TN AR AT KR ':.a. QN LA TR AR o TN TR TR LA RN, LT AU TN R

N

~

T

ey T S SN

-

W, ' DSOS AT OGO O M X AN AT 05 PR i B Yty
AT T T TR T st T e RIS e RN BRI e e

oo

p_};.',

o"

-

Upon completion of these observations, processes recompute their states and may add
new outgoing edges. Note that states and outgoing edges of faulty processes may not be
observed consistently by different reliable processes; this is the Byzantine aspect of the
problem. We assume that some unspecified mechanism coordinates the observations
and computations such that all observations precede all computations in a round. In
particular, processes cannot observe changes in the graph or process states during the
computation phase of a round.

Reliable processes use following rules to add edges, color edges and change their own
states. These rules may be applied over and over by a process until no further rule is
applicable. In the following, rules are given for a generic reliable process p and
arbitrary process j; (p,j) is the edge from p to j, if it exists. Let ¢n(j) denote the number
of incoming edges to j, as observed by p, during a round; white-out(p) is the number of
white outgoing edges of p.

Edge Addition::

(p,3) does not exist and (p observed j is on or in(j) > low) —
add black edge (p,s)

Edge Coloring::
(p,s) is black and in(j) > high — color (p,j) white

State Change::
{Let r be the round number}
p is off and white-out(p) > t+r/2 — p becomes on

Observation

1. No reliable process becomes off once it is on.

2. No edge is ever deleted by a reliable process. No whiste outgoing edge of a
reliable process ever becomes black.

3. A reliable process creates a black edge (p,7) only if j is observed on by some
reliable process, possibly p. "edge (p,j) is white only if there are at least low
reliable processes with edges to j and hence these edges are observed in all
subsequent rounds by all reliable processes.

4. There is nothing magical about the function ¢ + r/2.

Let R be such that agreement on a common value is reached by the ead-of round R.
Any function f satisfying the following, is acceptable.

w2 A

LA

v

i
f
g
8
§
8

A

i
g
"

f2)=low, ir+2) <1+ f[r) for all r in 0 <r < R-2, flR-3) > high,
J(R-2) > high.

We allow function f to be real valued and hence, without loss in generality, we can
relax one of the conditions to: [R —3)] > high. One of our goals is to minimize R.
Note that [f] increases from low to at least high from round 2 to R—3 and f can
increase by at most 1 in two rounds. The unique minimum for R is 2t + 4 and a choice
for fis, t + r/2.

We have not yet specified the conditions under which processes commit to different
values. These conditions become apparent from the results proven below. In the
following p,q denote reliable processes and 5 an arbitrary process. We use "at round r*
to mean upon completions of computations of round r and "in round r" to mean prior
to computations of that round. "At round 0" will refer to initial conditions.

Lemma 1:

Edge (p,q) is white at round (r + 2) iff ¢ is on at round r.
Proof:

If g is on at round r, it is observed on in round (R+ 1) by all reliable processes and
hence tn(q) > high at (r+1). Then every reliable process, including p, has a whste
edge to ¢ at round (r+2). Conversely, if ¢ is off at round r, it is off at all precious
rounds and it is observed off in round (r+1). Hence in(q) < low at (r+1) and
therefore no reliable process has a white edge to ¢ at (r + 2).

Let np(r) denote the number of reliable processes which are on at round r. We show in
the following lemma that if any reliable process changes state then every reliable process
is on two rounds later; furthermore a state change is possible only if at least r/2 reliable
processes are on two rounds earlier. We note that np(r) is monotone nondecreasing in r.

Lemma 2:
Foreveryr,2 < r < R-2,

[np(0) = np(r)] or [np(r + 2) = high and np(r—2) > (r—1)/2]

_ Proof:

Consider the smallest r, if any, for which np(0) 3£ np(r). If no such r exists, the lemma
holds. Some reliable process p applies the state change rule at round r. For P,
white—out(p) > t+r/2 in round r; hence p has white edges to at least r/2 reliable

$his' My

o O

PR e L T

B

- GRS I 8 »
"."‘:9:'3*"aa"'ﬁ’;(i, l‘:'z‘ Sah ":’A g " DA \’“ kAL, Y ‘i° BN NS “' ". “‘ .|.C.‘ h‘"t‘.h' . 'l' ﬂ"‘t‘ ’o‘ et “. 1t “ Y ‘.' Y ". A ;‘C " ,‘:‘, i
KL p * N N . i - A

= s

28 B WE

=2 B A 55

a2
\

processes and, from lemma 1, all these are on at round (r—2), i.e. np(r—2) > r/2.
Also np(r) > np(r —2) and hence np(r) > r/2.

Next we show that every reliable process is on at round (r + 2). We only need to prove
this for reliable processes which are off at round r; let ¢ be one such process. We show
that if (p,j) is whste at round r then (q,7) is whste at round (r + 2): for (p,s) to be whste,
in(j) = high in some round before or in round r, as observed by p; hence at least low
reliable processes have edges to j in round r; then every reliable process has at least a
black edge to j at (r+ 1) and white edge at (r+2). Also, edge (p,q) is white at round
(r+2), from lemma 1. Also, from lemma 1, p has no white edge to ¢ at round r.
Therefore, white-out(g) at round (r +2) > 1+ white-out(p) at round r > ¢t + (r +2)/2;
hence ¢ is on at (r + 2).

Consider any round . For ¥ < r, np(r) = np(0) and hence the lemma holds.

For ¥ > r, np(r¥ + 2) = high.
For ¥ =r+1, np(f —2) > np(r—2) > r/2=(r—1)/2.

For/=r+2,0r ¥ =r+3,np(r—2)> np(r) > np(r—21 (r+2)/2 > (¥ -1)/2.

For all larger values ¢, np(¥ — 2) = high > (r—1)/2.
Theorem:

1. np(0) =0 implies np(R—2)=0
2. np(0) > low implies np(R — 2) = high

3. np(0) < low implies [np(0) = np(R — 2) or np(R — 2) = high)
Proof:

1. Suppose np(0) =0. Observe that np(1)=0. Let r be the smallest value,
r > 2, for which np(0) £ np(r). Then from lemma 2, np(r—2) >
(r—1)/2 > 0, contradiction.

2. Let np(0) > low. From lemma 1, every reliable process p is on at round 2
because white-out(p) > low=1=t+r/2, at r=2. Hence np(2) = high, from
which the result follows.

3. Suppose np(0) # np(R - 2). Then from lemma 2, np(R—4) >
(R-3)/2 > (2t+1)/2. Hence np(R—4) > low. Because np(0) < low,
np(0) 7 np(R—4). From lemma 2, np(R — 2) = high.

Commit Rule:: At round R,
white—out(p) > high — commit to 1

\)
PR Wt

L ha 40 damdie Loa

A&

WL oyT % W)

S
-

S | A

e

»

r A, y ££ -
g o X G0 * Bl

~

T ——— W - -—— T

g 5
Wy
Ay
P & white—out(p) < high — commit to 0
t)
0

Corollary 1:

»

All reliable processes commit to the same value. If they are initially off/on they
commit to 0(1).

W et
E d"i'r

Proof:

From the theorem np(R—2) < low or np(R—2)=high. If np(R—2) < low then,
from lemma 1, for any reliable process p, white—out(p) < high at round R. If
np(R — 2) = high then, again from lemma 1, white—out(p) > high. Hence all reliable
processes commit to the same value. Other parts follow trivially from the theorem.

=8

R o ol]

"
-

-
¢ Fa

AR TR

B o n s R

¥
R}
T
b
iy
)
S
1] -
*, A
iR
=
[X
=
e
T
BY . SN
%
Q N .
V,‘I .\? '
.‘ N "\

..
h" ‘

-

ll
U
3

O M eI A A I e e T e

A
o

REFERENCES

1. Lamport, L., Shostak, R. and Pease, M. "Byzantine Generals Problem",
! TOPLAS 1082.

2. Lynch, N., Fischer, J. and Fowler, R. "A Simple and Efficient Byzantine
Y Generals Algorithm", Proceedings of the 2nd Symposium on Reliability in
Distributed Software and Database Systems, July 1982.

L

~ 3

TSR SRS
i
11

Y, (Y C () 1 i (LA ‘ i R
BOAOAOAAN) ‘*‘a‘*‘*"’*“s Cod e u".ﬂ '.c AT ANAT AP &L &L A heRSE R,

el
'~} R \)
” .'f"' 8
LIFR ie
T
‘;l?“'
Vet

ro-
o
-
B
X
&

*';" ®

R On the Nonexistence of Robust
AASS 4 °

‘3135' & Commit Protocol

K. Mani Chandy

e -
ffé S
o o

PO Jayadev Misra

s

W &:’ Department of Computer Sciences
The University of Texas

:‘:' . i (512)471-4353

i‘.::. .

e E 21 November 1985

=

[

X
e)
M

i

=3

£

This research was supported by a grant from the Office of Naval Research under grant
& N00014-85-K-0057.

T
".
.-'.—
-
\

\
[
Y E -——

:

e A0 R0 AN AR L 0 O N ¥ o RN KT RSN OO 0 T LA ST AV SN
".'f""s,:’}"'sﬁi"ﬁ‘!*,‘ﬂ'.":\9.'"x‘ EROROOGL AR ST Y z‘.‘"‘.l':'.\'t.h AL RINTR LR IAF A .".h‘?'}.lt’!h" WU WY S -‘}‘il‘.:'u. ob AV .:"f\ ‘l'.b .J .50,

oL

| =AS

K’"'

s

* o

A

Table of Contents

1. Introduction

2. Asynchronous Message Passing Systems
3. Commit Protocol

4. Robust Commit Protocol

N e

ww Aot i e Ao b o At St Rt Rt A - on dt R asgi-nid ais-and anh- etk sl ack-obi-athy ate sk o ana oA okl il ael

;:: 1. Introduction
o An important result in the theory of asynchronous message passing systems is the
| impossibility of distributed consensus with one faulty process. This problem was first
' defined and its impossibility proven in [2]. The proof in [2] relied on operational details
of asynchronous message communication: channels, sends and receives, etc. Our goal is
Y to prove this beautiful result in, what Dijkstra terms, a purely nonoperational
N framework. We do so by defining a set of properties asynchronous message passing sys-
tems and a set of requirements for consensus with, or without , faulty processes. Our
g formulation is slightly more general than the original formulation: we allow processes
§ to be nondeterministic and we do not require any kind of fairness after failure of a
process.

We use some algebraic properties of system computations introduced in [1]; we
= also use most of the key ideas from [2].

2. Asynchronous Message Passing Systems

Discussions of asynchronous message passing systems are usually given in terms of
processes, channels, send and receive primitives for message communications, etc. We
take a different approach; we define these systems by a small set of their properties
which make no mention of channels or messages.

i An asynchronous message passing system, to be henceforth called system, is a set
of processes and a set of computations. A computation is a finite sequence of pairs of
the form (e,p), where ¢ is an event and p is a process.

An intuitive meaning of a computation in a system is that it is possible for every
event to happen at the corresponding process in the sequence given by the computation.
We assign no meanings to events or processes. No causality among events, such as be-
tween sends and receives, is explicitly stated. It is not required that the processes be

2 deterministic.
N
Property Al:: Every prefix of a computation is a computation.
: [
The empty sequence is, therefore, a computation; it is denoted by null. 1
- Notations:: Symbols z,y, z,y’ denote computations, e, e’ events and p, a process.]
" <z;(e,p)> denotes the sequence obtained by concatenating the pair (e,p) to z. An {
extension of a computation z is a computation of which z is a prefix. For any z and p !
o let z, be the subsequence of z containing p as the process component. There is an event 1
’. L

- =-on p between z,y, where y is an extension of z, if there is some pair (e, p) in y after z. 3

Definition:: Computations z,y are tsomorphic with respect to p, to be denoted by
z [p] y, means that z, =1y,

>

......

The notion of isomorphism is from (1] where it was used to state and derive
several properties of system computations. For this paper we only note the following
. two elementary properties. :

e [p] is an equivalence relation over system computations.

o For z a prefix of y, there is an event on p between z,y iff ~z [p] y.

g Property A2:: Let <z;(e,p)> be a computation and y an extension of z such that
z[p]y. Then, <y; (e, p)> is a computation.

The intuitive meaning of property A2 is that if an event e can happen at a process
p at some point in the computation of the system then the same event can happen at a
later point in the computation, provided that p has taken no other step between these
two points. This requirement does not hold for all concurrent systems; in a shared vari-
able system, a process reading the value of a shared variable is not guaranteed to read
the same value at a later point. However communications in message passing systems
are limited to message sends and receives which, by their asynchronous nature, satisfy
this property.

Property A3:: For any z and p, there is a computation <z; (e, p)>.

In a message passing system, processes wait only to receive messages; this property
postulates that a process can always terminate its waiting without receiving a message.
Furthermore, a terminated process can always take a dummy step.

We have defined computations as finite sequences and almost all of our proofs will
exploit the finiteness assumption. In order to state the problem formally, however, we
need the concept of a fair sequence, a special kind of infinite sequence. A fair sequence
is an infinite sequence of (event, process) pairs where each finite prefix is a computation
and each process appears in an infinite number of pairs. It follows, by repeated applica-
tion of A3, that every computation is a prefix of some fair sequence.

.
L=

A |

3. Commit Protocol

Intuitive Discussion

A commit protocol is a system in which every process eventually (explained below)
commits to a value, 0 or 1, and all processes commit to the same value. Furthermore,
~- processes do not commit to one value, say O, in all computations. Fair sequences cap-
ture our intuitive notion of infinitely long computations (though, recall that our formal
model only admits of finite computations) and hence, we require that—every fair se-
quence have a finite prefix in which a commitment is made. Since every computation is

L)

:
%
§

. ¥ o ¥ Y
i!"c“‘ L
SNy L

AR Ve Wy Bt A ~ o E R N T N P, -.\.'\.-I..- ,-,.n'.n P -(‘:',-
""‘“*?‘ﬂ‘,s?‘?aw‘?ﬂf e !’:‘vh‘"t‘ On) h" "'I."h“h‘. a" X ’J o s I L ~ ‘ i)

0.5

AT, R,

Y

-

L rox

T

. §
"“-‘-)
.

ot “’ ‘.'t. o

=g
e

S

" a prefix of some fair sequence, it follows that every computation has an extension which
commits.

ﬂ Now we introduce the extremely useful idea of valency of a computation, from [2].

" Call a computation O—valent if all extensions of it which commit , commit to Q;

~;§ similarly 1-valent. A bivalent computation is neither O-valent nor 1-valent . Since

g every computation has an extension which commits, it follows that a bivalent computa-

tion has a O-valent extension and a 1-valent extension. Call a computation univalent ¥
g it is either O-valent or 1-valent.

% Now we give a formal set of requirements for a commit protocol.
e
Formal Description of Commit Protocol

@ Let y sncludes z denote that z, is a prefix of Yp for all p, i.e., every process has ex-
) tended its own computation in going from z to y. The relation sncludes is a generaliza-
E tion of extension.

A commit protocol is a system in which computations are O-valent, 1-valent ar
‘,r_l" bivalent. These satisfy:
- C1:: There is a O-valent computation and a 1-valent computation.
ﬁ C2:: Every bivalent computation has an extemsion that is O-valent and an exten-

sion that is 1-valent.
3
rX C3:: If y includes z and z is O-valent (1-valent) then y is O-valent (1-valent).
H C4:: Every fair sequence has a finite prefix that is univalent.
:CC Observation:: The null computation is bivalent, from C1 and C3.
. Definition:: Two computations are sncompatible means that one is O-valent and the
. other is 1-valent; they are compatible otherwise.
)

Lemma 1:: For a computation <z;(e, p)> and any extension z of z,

b= e

= z [p] z or the computations <z; (e, p)>, z are compatible.

L

Proof:: Suppose z(p] 2. Then, from A2, <z;(e,p)> is a computation. If <z; (e, p)>
- “"and z are incompatible then one is O-valent and the other 1-valent and hence
<z;(e, p)>, which includes both these computations, is both O-valent and 1-valent,
from C3; contradiction! a

[y

EE N
LR O

D) I]

g) L (R ¥ \ ; YWY YA LG 7 o ki : ¥ (U OO0 ?
“,’l‘..l N n‘. :‘ :‘:‘l "\ ,'2‘:':!.1'..-'0) .. .' X *L‘A .‘,‘ ‘o .l‘- Id‘i"‘ 5 ‘ﬂ.l'?‘..- .| Y 'y (i (N t"‘h“ a‘l‘; ‘.l C‘l‘“*\"“k"'t'“ﬁ’" .i’l‘l'«‘.""l'r.‘.’s".l.\lo .n I.l (¥

[O
NS

A process p is a decider for a bivalent computation x if an event on p extends z to
a O-valent computation and another event on p extends z to a 1-valent computation;
equivalently, there exist incompatible computations <z; (e, p)> and <z;(e’,p)>. The
theorem, given below, shows that every commit protocol has such a pair of incompatible
computations.

Theorem 1:: (Existence of Decider)

There exist incompatible computations <z; (e, p)> and <z;(e’, p)>.

Proof:: We assume the contrary: every pair of computations <z; (e, p)>, <z;(e',p)>
is compatible. We then show that for every bivalent z and p there exists a bivalent ex-
tension y of z such that - z [p] y; we then show that this leads to a contradiction of the
requirement C4.

HOE L B S

Consider any bivalent z and process p. There is a computation <z; (e, p)>, from
A3. If <z;(e,p)> is bivalent, the result is proven. Otherwise, without loss in
generality, assume that <z;(e, p)> is O-valent. From bivalence of z, and C2, there ex-
ists a 1-valent extension z of z. Since <z;(e,p)> is O-valent and z is 1-valent, they
are incompatible and hence, from lemma 1, = z [p] 2.

Now we display a bivalent extension y of z for which —~ z [p]y. We only consider
extensions of z which are also prefixes of z. Since z [p] z and - z [p] 2, there exist exten-
sions y’, y such that z[p]y’, ~z|[p]y and y is a one event extension of y'. Therefore,
y=<y';(e’',p)> for some e’. We show that y is neither O-valent nor 1-valent and
hence bivalent. From C2, y is not 0-valent because 2 includes y and z is 1-valent. To
see that y is not 1-valent, note: (1) since <z;(e,p)> is a computation, y' is an exten-
sion of z and z{p]y’, from A2, <y’;(e,p)> is a computation, (2) <y’,(e,p)> and
y=<y',(e',p)> are compatible, from the assumption at the beginning of this
proof, and, (3) <y’,(e,p)> is O-valent, from C3, because it includes <z,(e,p)>
and the latter is O-valent and, (4) from (2) and (3), y is not 1-valent.

Now we have a procedure for obtaining a longer bivalent computation from any
bivalent computation and any process p. We may apply this procedure infinitely often,

s starting from null computation which is bivalent, using an arbitrary process p each time

and ensuring that every process is chosen an infinite number of times. The resulting in-
. finite sequence is fair and all its finite prefixes are bivalent. This contradicts require-
B ment C4. 0

4. Robust Commit Protocol
A commit protocol is robust means that in spite of failure of any one process at

A any point in the computation the remaining processes can commit to a value. Failure

h of a process can be modelled by no event happening at that process. It is somewhat
more difficult to define a fair sequence after failure of a process; fortunately we don’t

h,

o

by

e o s ~ AN S O N &
,f.h_' }ﬁ.h\'\"" ~‘ ‘ lqt\‘ OO\ 2l Wi ‘)““ﬁ.‘%i‘:') A‘ ‘\’ { J" ... L) N&;"‘ .‘."" . *' Jl'..‘..p!‘ !‘ -.0‘9' P9y \

G5 XM T

B2E =

wi B s

A 22 9N

AR

need to define that concept. We can work with a very weak requirement for robustness:
for any p, it should be possible to extend a bivalent computation to a univalent com-
putation without any event happening on p in between. Formally,

R:: For every bivalent z and p, there exists a univalent extension z of z such
that z [p] 2.

We now show that no robust commit protocol has a decider for any bivalent computa-
tion.

Lemma 2::

In any robust commit protocol, any two computations y = <z;(e,p)> and y’' =
<z;(e’,p)> are compatible.
Proof::

If z is univalent then y, y’ are compatible, using C3. For any bivalent z and p,
apply (R) to conclude that there is a univalent extension z of z such that z [p] z. From
lemma 1, y,z are compatible and also y’,z are compatible. Since z is univalent, y,y’ are
compatible.

Theorem 2:: (Impossibility of Robust Commit)

There is no robust commit protocol.

Proof::

Immediate from theorem 1 and lemma 2. O

Acknowledgement

We are greatly indebted to members of the Austin Tuesday Afternoon Club for 2
thorough reading of an earlier draft of this manuscript.

References

1. Chandy, K. Mani and Misra, Jayadev, "How Processes Learn," Proceedings
of the Fourth Annual ACM Symposium on Principles of Distributed
Computing, Minaki, Canada, August 5-7, 1985 and to appear in Distributed
Computing, in 1985.

2. Fischer, Michael J., Lynch, Nancy A., and Paterson, Michael 8.,
*Impossibility of Distributed Consensus with One Faulty Process,”
MIT/LCS/TR-282, Laboratory for Computer Science, Massachusetts In-
stitute of Technology, Cambridge, MA.

U S toaly

N T e s A e L M S S S
-) 1 S R 'y) > W v Wy > .

P TR

™
20

-

)
R

-
us

"~

N ‘-", . l"- L

.

g

-
B>

.}

Kotk 2

P

Gl

£-2 s

Yy

-
LA -

A

\

3

W~

HOW PROCESSES LEARN

K. Mani Chandy & Jayadev Misra
o Department of Computer Sciences University of Texas Austin, 78712

- .
o 3 S d
oo e

o

ot o
<)
e L

)
re! 1. Introduction advocate nomoperational reasoning. The basis for

fe ﬁ Processes in distributed systems communicate with nonoperational arguments is isomorphism; we reiate
.';:2 one another exclusively by sending and receiving isomorphism to process chains. Algebraic properties
11:5 messages. A process has access to its state but not to of system computations under isomorphism provide a
;‘v::: % the states of other processes. Many distributed precise framework for correctness arguments.

algorithms require that a process determine facts

1,;; !:3 about the overall system computation. In It has b“‘f proposed .l 36] "h."' s "°"i.°° of
:.':'f o anthropomorphic terms, processes “learn® about "knowled.ge' is useful . in studying distnbuteji
:\:‘: o states of other process in the evolution of system .°°mp“"‘"‘°°?‘ In "'.h" works, kn°""?"' Is
ff:t ﬁ computstion. This paper is concerned with how introduced via a set of axioms [4 . Our definition of
Lg processes learn. We give a precise characterization of knowledge is based on isomorphism. Our model
;':‘,% ;& the minimum informstion flow necessary for a process allows us to study how knowiedge is "gained” or
’:::'t to determine specific facts about the system. “lost®. One of our key theorems states that
;“:;. knowledge gain snd knowledge loss both require
e ﬁ The central concept in our study is that of sequential transfer of information: if process ¢ does
A tisomorphism between system computations with not know fact b and later, p knows that ¢ knows b,
Z"" _ respect to a process: two system computations are then ¢ must have communicated with p, perhaps
,‘%:, . ‘a isomorphic with respect to s process if the process indirectly through other processes, between these two
‘?’éf . behavior is identical in both. In anthropomorphic points in the computation; conversely, if p knows that

i B terms, “"system computations are isomorphic with ¢ knows b and later, ¢ does not know b then p must
s;::: ! E respect to s process”™ means the process cannot have communicated with ¢ between these two points
‘:::: distinguish between them. in ‘the computstion. In the first case, the effect of
o X g communication is to inform p of ¢’s knowledge of b.
:t‘:: Many correctness arguments about distributed Analogously, in the second case, the effect of

systems have the following operationsl flavor: "I will
send a message to you and then you will think that I
g,'g‘ am busy and so you will broadcast ...". Such
; operational arguments are difficult to understand and

error prone. The basis for such operational

communication is to inform ¢ of p's intention of
relinquishing its knowledge (that ¢ knows b).
Generalizations of these results for arbitrary sequences
of processes are stated and proved as coroliaries of a
general theorem on isomorphism.

O

TR
(=

arguments is usually s "process chain®: a sequence of

-
]
-

1]

Y E 2 A

PACATE

message transfers along a chain of processes. We We use the resuits alluded to in the last paragraph

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

o 204
Lt E; ©1985 ACM 0-89791-167-9/1985/0800-0204 $00.75

‘W

D

'ﬂ‘ - “ay. ® TR , R
L A o A A L LT N O

. — . ! R P A VR R
R T SRR » b bbb » Wb b T 4y I b

B s T

=5 W

" -
G

e

K4
.

for proving lower bounds on the number of messages
required to solve certain problems. We show, for
instance, that there is no algorithm to detect
termination of an underlying computation using only

s bounded number of overhead messages.

2. Model of a Distributed System

A distributed system consists of a finite set of
processes, A process is characterized by a set of
process computations esch of which is a finite
sequence of events on that process. Process
computations are prefix closed, i.e. all prefixes of a
process computation are also process computations (of
that process). An event on a process is either a send,
a receive or an internal event. A send event on a
process corresponds to sending of a message to
another process. A receive event on a process
corresponds to reception of s message by the process.
There is no external communication associated with
an internal event. For s set of processes P, a send
event by Pis a send event by some component process
of P to a process outside P, similarly a receive event
by P denotes receipt by some process in P of a
message sent from outside P. Communication among
processes in P are internal events of P. We use "¢ is
on P, for event ¢ and process set P, to denote that ¢
is an event on some process in P. We rule out
processes which have no event in any computation.
We assume that all events and all messages are
distinguished; for instance, multiple occurrences of the

same message are distinguished by affixing sequence
numbers to them.

Let z be any sequence of events on component
processes of s distributed system. The projection of 2
on s component process p, demoted by sz, is the
subsequence of z consisting of all events on p. A finite
sequence of events z is s system computation of a
‘distributed system means (1) for ail processes p, 3, is
s process computation of p and, (2) for every receive
event in 3, say receipt of message m by process p,
there is & send event, of sending m to p, which occurs

205

earlier than the receive in z: this send event will be
called the send event corresponding to the receive.
We leave it to the reader to show that system

computations are prefix closed.

In this paper we consider a single (generic)
distributed system. For instance, when we say “zis a
computation® we mean that z is a computation of the
distributed system considered here. We use
computation to mean system computation when no

confusion can arise.

Notation: We ¥, z to denote
computations, p, g for processes and P, Q for process
sets; these symbols may be used with subscripts or

superscripts. The concatenation of two sequences y

use z,

and z will be denoted by (y;z). For sequences y and z,
y < z denotes that y is a prefix of z in this case (y,
2) denotes the suffix of z obtained by removing y

from z. The empty sequence will be denoted by null.
The symbol == is used to denote equalities among sets

and among predicates. The symbol = is used for
definitions. The set of all processes in the system will
be denoted by

PP=D-P.

D and for any process set

3. Isomorphism

We define the relation [p] on the set of system
computations as follows.

Definition: For system computations z,i:

zlply = (z,=y,)
In other words, z [p]y means p's computation is the
same in system computations r and y. In this case,
we say z, y are ssomorphic unth respect to p. For a
process set P, define relation [P}, on the system
computations, as follows.

Definition: z|[P]ly = forallpin P, z[p]y.
Thus z [P| y means that, given only the computations
of processes in P we cannot distinguish z from y.
From definition, z [{ } | g, for ail computations z, y
where { } denotes the empty set. OBF%rve that [P} is

an equivalence relation.

It is convenient to represent all such isomorphism
relations by an isomorphism diagram: an undirected
labelled graph whose vertices are computations and
there is an edge labelled [P] between vertices z, y il P
is the largestoset of processes for which z [P]y.
Observe that every vertex has a self loop labelled [D]
where D is the set of all processes in the system.

Note that z (D] y, z 3 y, implies y is a permutation
of z.

Example 1: Consider a system with two
processes, p and q, for which part of the isomorphism
diagram, showing the relationships among four system

computation, is given below.

{{p,q}] ‘ z) Ip)

[tp,q}] [p]

(. y >[(p,ﬁq}l

up.an'j (q] @ (p,aH]

Figure 3-1: An Isomorphism Diagram

From the diagram z([p]y, but not z[gly. This
means p has the same computstions in both z and y,
whereas ¢'s computations in z and y differ.
Computations z and z have the same computations
for both p and ¢; hence one is a permutation of the
other. There is no direct relationship between y and
w; neither y [p] w nor y[¢] w holds. However, there is
an indirect relationship between y and w because
ylplz and z[qw.
relationships next.

We explore such indirect

u]

Definition: Let n > 0 and P; be process sets,
0<i<n

z[Py...PJs m z[P,...P,_|lyandy(P,|s,
for some computation y.

In the following, P, P,, .

Hence, [PQ|=([P]o[Q] where "o" is the
relational composition operator. This operator is
associative (from properties of relations). In terms of
the isomorphism diagram, z[Po . Pn] z means there
is & path from z to z whose edges are labelled with
Qg - - - /Q,, respectively, where Q; 2 P, for all 4.

Example 1 (contd.): We have y[p g w and

wigply. Also, trivially, ylgp)z ylgp g 2 ete.
0

We note some properties of isomorphism relations.

.o .P”, Q, denote arbitrary

process sets and =z, y, z denote arbitrary
computations.

1. [P} is an equivalence relation.

2. (Substitution) ({8] = [4]) implies
({a84] = [asq]) for arbitrary
sequences of process sets a, 8, 4, é.

3. (Idempotence) (P P| = [P]

4. (Reflexivity) z [P, ... P |z

5. (Iaversion) z [P, .. P |y=
v(iP,...P]=

8. (Concatenation) For0 < m < n,

3y =z[P...P_ |ny[P

m+1
P lz=z|P ...P P P |z

m m+l """

7.[PUQ]=([PIN[Q))
8.Q2A=(QIc(P])
0.(P=Q)=(|P]=[Q))
10. Q 2 Pimplies ((Q P] = [P] = [PQ)])

These properties follow from properties of
relations and our model. We only sketch a proof of
one part of property 8:

([QIES [P]) implies (Q 2 P).

If Q DP then there is & process p in P— Q. From our

model, p has an event ¢ in some computation (ze).
Then z[Q| (z;¢) and ~z [P|(z;¢). Hence [Q] L[P].

L o gﬂWLﬁK‘N&?CF&'&ﬁ“@‘_-‘C' A

b Al Ak Rl sl sak Sal ol Bab Bak Lk Sar Saku Sak ek ek ab Sak Il

-

Q‘l

o’

XX

RN
RN

F'y " A3
L)
uh 't by

3.1. Process Chains

As noted in the introduction, the basis for many
operational arguments are process chains: process p
informing ¢ which in turn, informs r etc. One of our
goals is to replace such concepts by algebraic
properties of system computations. In this section, we
show how process chains are related to isomorphism.
We first define process chains; this definition is along
the lines suggested by Lamport | 5 |.

Definition: For events ¢,¢ in a computation

7, ¢ £+¢ means:

1. ¢ is a receive and ¢ is the corresponding
send, or

2. events ¢, ¢ are in the same process
computation and (e == ¢ or ¢ occurs earlier
than ¢), or

3. there exists an event ¢” such that ¢ 5¢”
and & A¢.

e — ¢ when the
We will

— e, as shorthand for

For brevity we write
computation z is understood from context.
writeeg — ¢ — ...e _,
¢ — ¢, and snd e, _, — ¢,. Observe that
e — ¢ for every event ¢ in 2. A computation z has a
process chain <Pa P, v Pn> means there exist
events ¢, ¢, . . . €, DOL necessarily distinct, in z such
that event ¢, is on P, for all 0 < ¢ < n, and

Go-‘elﬂ e — Gn.

Obeervation 1: Any occurrence of "P " in a
process chain may be replaced by *P P*", or vice

versa, since for any event eon P, e — e.

Obeervation 2: Let z be a sequence consisting of
a subset of events from a computation y. Suppose
that for every event e in z, every ¢, where ¢ Ko, is
also in z and ¢ Zs¢. Then r is a computation.

3.2. Relationship Between Isomorphism and
Process Chain

DEOEOELNIND
‘,‘-‘.’.\‘A‘a‘:h ’h !‘4‘:’2‘

207

O 4T Ty L e ’ ‘ O,
"yt t.'. |'.‘i!.‘ ey fx‘lq ..‘.s #..0'.‘1 ,l’.‘s |. \." ﬂ_'"!‘... AN

Theorem 1: (Fundamental Theorem of Process
Chains)

Let z be a computation and z a prefix of z. Let PI,
Py ... P, n > 1, be sets of processes. Then
z[P Py...P,]z or there is a process chain
<P, P,...P,> in(z,)

0

Proof: Omitted
o

3.3. An Application of Isomorphism: How To
Construct A Computation By Fusing
Separate Ones

In this section, we show an application of
isomorphism: we give a construction to "fuse" two
computations to obtain a new computation, provided
certain types of paths exist in the isomorphism
disgram. We motivate the discussion by the following

Suppose (r:E) and (z:E) are

computations where all events in E are on a process

observations.

set P and all events in E are on P. Then, from
definition, (z;E;E) and (x;E;E) are also computations,
because events in E,E are independent and hence may
be fused in arbitrary order. A similar result appears
in Fischer, Lynch and Paterson [2]. The following

lemma is a generalization of this observation.

Lemma 1:
z < yand z < z Let P, Q be such that PUQ =D,
z[Ply and z[Q]=z Then

computation w where z < w, y [Q] wand z [P] w.
o

Let z, y, 2 be computations where

there exists a

The relationships among z, y, 2 and w are

represented by the following commutative

isomorphism diagram.

"0y 7 OO0 084
£ LA S ONRIGADOMIA M

F

T
N

4| R

L e
’ 2]

)
., (UMM
ICOWIEN N 3 Y)

AP

LYY i
- rv,
bagt~y

S

. s

Figure 3-2: [Isomorphism Diagram Depicting

Fusion
Proof of the Lemma:
Let w = x; (2,y); (z,2).

From the condition of the lemma, (z, y) has events
only on P and (z, z) has events only on Q. ~Since

PUQ=D, PNQ={ } and hence no process has
events in both (z,y) and (z,2). It follows, from
definition of computations, that w is a computation.
Also y [Q]w, 2[P]w and z < w, as required for
proof of the lemma.
(]
Note that, in the construction of lemma 2, all
events from E and E were present in the fused
computation. We prove a far more general result
below. We show that for any two arbitrary
computations y and z, the projected computations, yp
and 75, may be fused to form a new computation
provided there is a computation z which is a prefix of
both y and 2, and no message sent by P in (z,9) is
received by P in (z,y) and no message sent by P in
(2,2) is received by P in (z,2). This makes intuitive
sense: processes in P can execute all events in y given
only that processes in P execute all events up to z
and similsrly for executions of events on P up to z.
However, the statement and proof of this result are

difficult without the notion of isomorphism. We note
that the resuit may be easily generalized to fusions of

208

A Y R R R A IR A AR

T T N

arbitrary numbers of computations under similar

constraints.

Theorem 2: (Fusion of Computations):
Consider system computstions z, y, z where z < y

and z < 2. Let P be s set of processes such that

there is no process chain, (1) <P P> in (z, y) and (2)"
<P P> in (z, z). Then there is a computation w
where, z < w, y [P]w and z[P]w. That is, w

consists of all events on P from y and all events on P
from z.

o

Proof of the Theorem: According to theorem

1, absence of process chains as given in this theorem

means that, z [PP| yand z [P P) =

Consider the isomorphism diagram in Fig. 3-3.

Label the intermediate point between z, y as u and

between z, z as v in this figure. Now we apply lemma
1t 7, u, v to obtain w. Note that, u [P]y and

v [P| w; hence y (P|w. Similarly z [P} w. This

proves the theorem.
a
z
[]
P P
U oV
\ /
\ /
\\ /
7 ;‘\ IlP P
’
\ . ’
’
S 4
. N ~ 2
Y 3 w P

Figure 3-3: Isomorphism Diagram Depicting Proof

of Fusion Theorem

3.4. Semantics Of Event Types In Terms Of
Isomorphism
We now use isomorphism to state and derive some

important facts about various types of events. First,

W\ :.

n“_' ¢

AR SN SR

T R R A N T T S T U Y O VAW N YW W O T T TITPTYNYOY

note that a process carries out an internal event or
sends s message depending on its own computation
alone. Therefore, if a process takes such a step in a
computation z, it will also do so in y, if z, y are
isomorphic with respect to this process. An analogous
result holds for internal and receive events. The
following principle, which states these facts formally,
may be proven from the definition of system

computation.

Principle of Computation Extension::

Let ¢ be an event on P.

& 1. e is an internal or send event:

! (z [P}y and (z:¢) is a computation) implies
(v;e) is a computation

2. e¢is an internal or receive event:
(z:¢) [P] y implies (y — ¢) is a computation,
where (y — ¢) is the sequence obtained by
deleting e from y.

Y
y 4

Note: In (1), (z;e) [P](vie) and in (2),
z|Pj(y—e).

Corollary: Let ¢ be a receive event on P and let the

WD

corresponding send event be on Q.

‘?‘ (z| PUQ]y and (z;¢) is a computation) implies
i (yse) is 3 computation.
n]
Proof: ¢ is an internal event of PU Q.
9]

Following theorem follows from the principle of

computation extension.

Theorem 3: Let (z;¢) be a computation where ¢

is an event on P.

:, :'» Case 1: ¢ is a receive:

for every z: (z;¢) |[PP) z implies z [PP]:
;{I Case 3: ¢ is a send:
h" - ** for every : z [P P| z implies (z:e) (PP|:z

+
| S,

Case 3: ¢ is an internal event:

for every z: (zie) [PP) 2=z [PP]:

? D

- I

209

Proof: We will prove only Case 2; other cases are
similarly proven.

z[PP] z implies there exists y, z [P|y and y [P z.
From principle of computation extension, (y;e) is a

computation and (z;e) [P] (v:e)-
Also, (y;e) [P} .

Hence, (z;¢) [P P P| z and therfore, (z;e) [P P] .
a

This theorem captures the intuitive notion that
the set of possible computations, isomorphic with
respect to P, can only shrink in size as a result of a
reception as computations which do not include the
corresponding send are ruled out. Similarly, the set
of possible computations, isomorphic with respect to P
cannot shrink as a result of a send: after the send,
additional computations which accept the message
sent are isomorphic while all prior isomorphic
computations remain isomorphic. An internal event
can peither expand nor shrink the set of isomorphic

computations.

4. Knowledge

As we have remarked earlier, predicates of the
type !’ knows b ot z may be deflined using
isomorphism. We explore properties of such
predicates in our model. We show that they satisfy
the "knowledge axioms" as given in | 3,6 . We prove
a general result which shows that certain forms of
knowledge can only be gained or lost in a sequential
fashion along a chain of processes. That is, if b is
false for a computation and later, Pl knows P, knows
.+. P_knows b (this represents knowledge gain),
.o P>
between these two points of the computation.
Conversely, if Pl knows Py knows ... P, knows b
snd later, b is false (this represents knowledge loss),

then there is a process chain <P, P"_l

then there is a process chain_gP P, ... P >

between these two points of the computation.

SR SERLALACS RS ST
SR TR P VS SHAR VS

1.

oyl

" T

Pty

A

-

Crucial to our work is the notion of local
predicates: a predicate local to p can change in value
only as a resuit of events on p. We show that local
predicates play a key role in understanding knowledge
predicates. -

4.1. Knowledge Predicates

Let & denote a predicate on system computations
and "b at z* its value for computation z. Our
predicates are total, i.e. for each z, b at z is either
true or false. We furthermore assume that
z D} yimplies (bat z=bat y) for every predicate
b. Thus predicate values depend only upon
computations of component processes and not on the
way independent events are ordered in a linear
representation of the computation. A predicate ¢ is a
constant means ¢ at £ = ¢ at y, for all computations
z, y. We now define (P knows b) at z.

’,

Definition: (Pknowsb)atz= for all g
z[Ply:baty

Note that b may itseif be a predicate of the form
Q knows ¥ in the above definition.

some facts about knowledge predicates.

We next note
In the
following, z, y are arbitrary computations, b, ¥ are
arbitrary predicates and P, Q@ are arbitrary sets of
processes. All facts are universally quantified over all
computations. We use the convention that P knows
Q knows b at z is to be interpreted as (P knows (Q
knows b)) at z.

1. Pknows bat z = for all y: z[P]y : P
knows bat y

2.z [P)y smplies [P knows b at z = P
knows b at y)

3. (P knows b) implies (PU Q knows b)
4. (P knows b) implies (b)
5. (P knows b) or (~P knows b)

6. (P knows b) and (P knows ¥) == P knows
(b and ¥)

BN ATt T o T ¢ e

20

7. ((P knows b) or (P knows ¥)) implies (P
knows (b or V)

8. (P knows ~b) implies (~P knows b)

9. ((P knows b) and (b implies V)) implies
(P knows V)

10. P knows P knows b = P knows b
11. P knows ~P knows b = ~P knows b

12. P knows ¢, for any constant ¢.

These facts are easily derivable from the definition
of knows. We give a proof of (11), whose validity in
other domains have been questioned on philosophical
grounds [3].

Lemma 2: P knows ~P knows b = ~P knows b

a
Proof: P knows ~P knows b at z

= for all y: z|P]y : ~P knows b at y,

from definition
= for all y: z[P] y: there exists =

y[P] z ~b at z, from definition
= there exists 2 z | P] z: ~b at 2,

since [P] is an equivalence relation
= ~Pknowsbatz

a

There are situations where multiple levels of
knowledge such as, P knows Q knows b, are useful.
For instance, consider a token bus which is a linear
sequence of processes among which a token is passed
back and forth; processes at the left or right boundary
have only a right or left neighbor to whom they may
pass the token; other processes may send it to either
neighbor. There is only one token in the system and
initially it is at the leftmost process. Consider a
token bus with five processes labelled p, ¢, r, s, ¢t from
left to right. When r holds the token,

r knowes ((¢ knows (p does not hold the token)) and
(s knows (t does not hold the token)))

Relations of the form [P Q], with multiple process
sets arise from predicates with multiple occurrence of
knows;

R i

R R X

it

i

For instance:

p knows q knows b at z

= forall y: z|ply: qknowabaty

= forall y: z[p|y: (forall = y[g]z bat2z)
=foral zz{pg]z bat:z

4.2. Local Predicates

Let b be a predicate on system computations, and
P a set of processes. We define a predicate P sure b
as follows.

Definition: (P sure b) at z = [(P knows b) at z or
(P knows ~b) at zj

In other words (P sure b) at z means that P knows

the value of 4 at z.

We define unsure as negation of sure.
Definition: P unsure b = ~P sure d
Hence, (P unsure b) at z = [(~P knows b) at z and
(~P knows ~b) at z|
Definition: b is local to P = for all z: (P sure b)

at z.

That is, the value of 6 is always known to P.
Local predicates capture our intuitive notion of a
predicate whose value is controlled by the actions of

processes to which it is local.

We note the following facts about local predicates;
in the following, b is an arbitrary predicate and P, Q@
are arbitrary sets of processes.
1. (b s local to P and z|[Ply) implies
(batz=1"baty)

2. b 18 local to Psmplies (b = P knows b)
3. b is local to P = (~b) is locai to P.

4. b 18 local to P smplies
[Q knows b = Q knows P knows b

5. (P knows b) is local to P.

=7 8. bis local to Pand b is local to Q and P,Q
are disjoint smplies b is a constant,.

7. b is a constant smplies b is local to P.

. (P sure b) ia local to P.

Proof of (1) follows from definition of knowledge
and local predicates. (2) and (3) follow trivially. (4)
follows from Q knowsbat z = for all y: z[Q]y :
baty="forally: z[Q|y: Pknowsbat y (since b
is local to P} = Q knows P knows b at z. (5) follows
from, (P knows P knows b or P knows ~P knows b)
= (P knows b or ~P knows b) = true. Proof of (6)

is important and hep-e is given below as a lemma.

(7) and (8) are trivially proven from definition.

Lemma 3: b 1s local to disjoint sets P, Q implies

b is a constant
0

Proof: We show that b at z = b at rull, for all z.
Proof is by induction on length of z.

b at null = b at null.
b at (z;¢) = b at x, because event ¢ is not on Por
¢ is not on Q, and hence
(zie) [P) z or (zie) Q] =5
then the result follows from property (1).
o

For a system of processes, b is common knowledge
is defined as the greatest fix point of the following

equation.

b is common knowledge = b and (p knows b) is
common knowledge, for all processes p. Intuitively, &
13 common knowledge means b is true, every process
knows b, every process knows that every process

knows b, ete.

Halpern and Moses | 3] have shown that common
knowledge cannot be gained, if it was not present
initially, in a system which does not admit of
simultaneous events. The following corollary to
lemma 3 shows that common knowiedge can be

neither gained nor lost in distributed systems.

Corollary: In a system with more than one

process, for any predicate b, b 18 common knowledge

is a constant. —
(m}

Y

- -

-~

- W

e

we

2

.
LA

n

Proof: For any process p, b 18 common knowledge
= p knows (b is common knowledge). Hence, b is
Applying

lemma 3, b {a common knowledge is a constant.

common knowledge is local to every p.
— m]

It is possible to show that even weaker forms of
knowiedge cannot be gained or lost in our model of
distributed systems. Process sets P, Q have identical

knowledge of b means,
P knows b = Q knows b

Corollary: If P, Q are disjoint and have
identical knowledge of b then P knows b (and also

Q knows b) is a constant.
o

Proof: P knows b is local to P and Q knows b is
local to Q. From P knows b= Q knows b, thiey are
also local to Q and P respectively. The result follows

directly from lemma 3.
a

Corollary: If P,Q are disjoint and P sure b = Q
sure b, then P sure b (and also Q sure b) is a

constant.
a

4.3. How Knowledge Is Transferred
We show in this section that chains of knowledge

are gained or lost in a sequential manner.

Theorem 4: For arbitrary process sets
P ...,P, n 21, predicate b and computations z,
Y
(Pl knows ... P knows b at :cand::[Pl e P"]y)
implies (P, knows b at y)

8]

Proof: Proof is by induction on n. For n=1,
l"l knows b at z,
trivially.

z [P,]y implies P, knows b at y,

Assume the induction hypothesis for some n~1,
n > 1, and assume

P, knows ... P, knowsbatzand z|P ... P |y.
We shall prove P, knows b at y.

From z [P, ... P |y, we conclude that there is a z
such that,

z(P,...P,_ lzand z[P]y.
From z|P,...P _,]z and P, knows
P, _, knows (P, knows b) at z, we conclude, using
induction, P, _, knows P, knows b at z. Hence, P,
knows b at z.

Since z [P]y, P knows b at y.

]

Corollary: For arbitrary process sets
P, ...P,n > 1, predicate b and computations z,
v

(P, knows ... P, _, knows ~P_ knows b at z and

:1:[}’l ... P y) implies ~P_ knows b at y
a

Note: For n =1 antecedant is, ~P, knows b at

Coroliary: Theorem 4 holds with knows replaced

by sure.

Theorem 4 can be applied to (1) z <y
(knowledge is lost) and (2) y < z (knowledge is
gained). Using theorem 1, we can deduce that there is
a process chain < P ... P, > in the former case
sad < P, ... Pl > in the Iatter case. We first prove
a simple lemma about the effect of receive or seni on
knowledge: we show that certain forms of knowledge

cannot be lost by receiving nor gained by sending.

Lemma 4: (How events at a process change its

knowledge)

Let b be a predicate which is local to P and (z;¢) 8
computation where ¢ is an event on P.

1. ¢ is & receive: {knowledge is not lost}
(P knows b at z) implies (P knows b at (zse))

i -qﬁ-'\;‘mﬁ"‘\v

R R APPSR NG 0

2. ¢ is a send: {knowledge is pot gained}
(P knows b at (ze)) implies (P knows b at z)

3. e is an internal event: {knowledge is neither
lost nor gained}
(P knows b at z) = (P knows b at (z;¢))

a

Proof: We prove only (1). Consider any z such
that (z;e) [P) z. We will show b at z and hence it
follows that P knows b at (z;e).

Since z [P] z, we have (z;¢) [P P .

From theorem 3, since ¢ is a receive, z (P?] 2.

Since b is local to P,

P knows b = P knows P knows b.

From theorem 4,

(P knows P knows b at z, z | P P) z) implies
(P knows b at z)

(P knows b at z) implies (b at z)

This completes the proof.
[u]

Corollary: (b is local to P, ~P knows b at z, P
knows b at y, z < y) smplies (P receives a message in

(=, v)-
a

Corollary: (b is local to P, P knows b at z,
~P knows b at y, z < y) implies (P sends a message

in (z, ¥)).
o

Theorem §5: (How Knowledge Is Gained:)
Let =z, y be computations where z <y,
~(P, knows b) at z and (P, knows ... P, knows b)
aty, for arbitrary process sets P,...P, n 2 1.

Then there is s process chain <P, ... P,> in (3, y).

=Furthermore, if b is local to F” then P_ has a receive
event in (2, y) such that b at 2 holds for every prefix z

of y which includes the corresponding send event.
a

L% 1., 8,0, 0,0

Li e foa toa oo e fha die file i

Theorem 6: (How Knowledge Is Lost:)

Let z, y be computations where z < y,

P, knows ... P_ knows bat z and ~P, knows b at

¢, for arbitrary process sets Pl ...P,n > 1. Then

there is a process chain <P, ...P > in (z, v)-

Furthermore, if b is local to Fn then P, has a send
event in (z, y).

8]

Observe that the statements of the two theorems
are not entirely symmetric for receive and send
events. The reason is that every computation
including a receive must also include the

corresponding send, but not conversely.

Theorems 4, 5, 6 and their corollaries hold with

knows replaced by sure.

5. Applications Of The Results
We sketch a few applications of the theory
developed so far. A full treatment of these results

may be found in [8].

We show that it is impossible for process P to

track the change in value of a local predicate of P,
exactly at all times; P must be unsure about the value
of this predicate while it is undergoing change. We
also show that necessary condition for changing a

local predicate b of P, is that P knows P unsure b, at
the point of change.

Traditional techniques for process failure detection
based on time-outs assume certain execution speeds
for processes and maximum delays for message
transfer. It is generally accepted that detection of
failure is impossible without using time-outs, a fact
that we prove formally. We use the fact that failure
of a process is local to the process and the process
does not send messages after its failure; hence other
processes remain unsure at all poillt®®about a process
failure,

yrorraovraTre hah as ke i he i dhha dh i

YT R AU U R R >
,‘lg.- v !- A ‘n'\..-!’.l.\ Y ‘!‘!‘o-

sy Y
o) ‘

L ¢

\l

X2 s 'gv,?'x
% E T

L
et

e

P

We show that any algorithm, which detects
termination of an underlying computation, requires at
least as many overhead messages, in general, for
detection as there are messages in the underlying
computation. We [irst show that in order for
termination to be detected, an overhead message is
sent by some process, without its first receiving a
message, after the underlying computation terminates;
this fact is proven directly from the theorem of
knowledge gain, because detecting termination
amounts to gaining knowledge.

Next we show that a process is sometimes required
to send an overhead message even when the
underlying computation has not terminated, because
the computation may be isomorphic (with respect to
this process) to a computation in which the
underlying computation has terminated. Using these
two results, we construct a computation, in which the
number of overhead messages is at least as many as

the number of underlying messages.

8. Discussion

We have shown that isomorphisms between system
computations with respect to s process is a useful
concept in reasoning about distributed systems.
Isomorphism forms the basis for defining and deriving
properties about knowledge. "Scenarios® have been
used [7] to show impossibility of solving certain
problems; in our context, a scenario is a computation,
formal

between scenarios.

and isomorphism is the treatment of

equivalence Theorems on
knowledge transfer provide lower bounds on numbers
of messages required to solve certain problems. We
have used isomorphism as the basis of fusion theorem
and related isomorphism to semantics of send, receive

and internal events,

A number of generalizations of this work are
possible: we can define isomorphism based on states
of processes, rather than computations; we can

introduce the notion of time into computations; we

AR RN SRR T R RN

214

WY WY W WX TE R - - N cw = m e =TT

can define belief in terms of isomorphism. Most of
the results in this paper are applicable in the first case

but not in the other two cases,

Acknowledgement: We are indebted to Shmuel
Katz, Joe Halpern, E.W. Dijkstra and Bengt Jonsson
for their comments. Particular thanks go to Ernie ~~
Cohen for a careful reading of the manuscript and
insightful comments.

This work was supported in part by a grant from the
Office of Naval Research under N00014-85-K-0057.

REFERENCES

1.K. M. Chandy & J. Misra: "Drinking
Philosophers Problem®, TOPLAS, October
1984.

2. M. J. Fischer, N. Lynch & M. Paterson,
*Impossibility of Distributed Consensus
with one Faulty Process®, Journal of the
ACM, April 1985,

3.J. Y. Halpern & Y. Moses: "(Knowledge
And Common Knowledge In A Distributed
Eavironment®, ACM SIGACT-SIGOPS
Symposium on Principles of Distributed
Computing, Vancouver, Canada, August
1984.

4. J. Hintikka: *"Knowledge and Belief,
Cornell Unsversity Press, 1962.

5. L. Lamport:, "Time, Clocks and the
Orderings of Events in a Distributed
System”, Communications of the ACM,
Vol. 21, No. 7, pp. 558-584, July 1078.

6.D. Lehmann, "Knowledge, Common
Knowledge, and Related Puzzles®, ACM
SIGACT-SIGOPS Symposium of
Principles of Distributed Computing,
Vancouver, Canada, August 1984.

7. N. Lynch & M. Fischer, "A Lower Bound
for the Time to Assure Interactive
Consistency”, Information Processing
Letters, Vol. 14, No. 4, June 1982.

8. K. M. Chandy & Jayadev Misra, "How
Processes Learn®, Distributed Computing,
Vol. 1, No. 1, Jaauary 1086, (Published by
Springer Verlag).

¥
aga,

%

i
.‘

¢

S5, d "! 'l\
,A." ,,-,' ot I::tﬂ.u',‘

T T T T T T T T T R TR TR TR N N TR

Distributed Computing (1986) 1:40-52

How processes learn

K.M. Chandy and Jayadev Misra

W T e e e WR- W X a—

DISTRIBUIED,
COMRUTING,

C. Springer-Verlug 1986

Department of Computer Sciences. University of Texas at Austin. Austin, TX 78712, USA

Juavadev Misra is a professor
in the Department of Com-
puter Sciences at the Univer-
sity of Texas at Austin. His
primary research interests are
in the area of distributed com-
puting: specification and de-
sign of networks of usyn-
chronous components. He be-
lieves that sound practical
rechiniques must be based on
elegant theories.

Mani Chandy is a professor
of Computer Science and
Electrical Engineering ut the
Unicersity of Texas at Austin.
He is chairman of the Com-
puter Sciences Department.
His research interests are in
distributed systems and per-
Jormance analysis.

1 Introduction

Processes in distributed systems communicate
with one another exclusively by sending and
receiving messages. A process has access to its

Offprint requests to: K.M.Chandy

This work was supported in part by a grant from the
Office of Naval Research under N00014-85-K-0057

state but not to the states of other processes.
Many distributed algorithms require that a pro-
cess determine facts about the overall system
computation. In anthropomorphic terms, pro-
cesses “learn™ about states of other processes in
the evolution of system computation. This pa-
per is concerned with how processes learn. We
give a precise characterization of the minimum
information flow necessary for a process to de-
termine specific facts about the system.

The central concept in our study is that of
isomorphism between system computations with
respect to a process: two system computations
are isomorphic with respect to a process if the
process behavior is identical in both. In anthro-
pomorphic terms. “system computations are
isomorphic with respect to a process” means
the process cannot distinguish between them.

Many correctness arguments about distrib-
uted systems have the following operational fla-
vor: “1 will send a message to you and then
you will think that I am busy and so you will
broadcast...”. Such operational arguments are
difficult to understand and error prone. The
basis for such operational arguments is usually
a “process chain™: a sequence of message trans-
fers along a chain of processes. We advocate
nonoperational reasoning. The basis for non-
operational arguments is isomorphism; we re-
late isomorphism to process chains. Algebraic
properties of system computations under iso-
morphism provide a precise framework for cor-
rectness arguments.

It has been proposed [3, 6] that a notion of
“knowledge” is useful in studying distributed
computations. In earlier works, knowledge is
introduced via a set of axioms [4]. Our defini-
tion of knowledge is based on isomorphism.
Our model allows us to study how knowledge

-

e

[s o]
AR A

E__ 3

L

-

Tah

3 _

5

~

—%
AN

g T

A A AT

K.M. Chandy and J. Misra: How processes learn

is “gained™ or “lost”. One of our key theorems
states that knowledge gain and knowledge loss
both require sequential transfer of information:
if process q does not know fact b and later, p
knows that g knows b, then ¢ must have com-
municated with p, perhaps indirectly through
other processes, between these two points in the
computation; conversely, if p knows that ¢
knows b and later. ¢ does not know b then p
must have communicated with g between these
two points in the computation. In the first case,
the effect of communication is to inform p of ¢'s
knowledge of b. Analogously, in the second
case, the effect of communication is to inform ¢
of p's intention of relinquishing its knowledge
(that ¢ knows b). Generalizations of these re-
sults for arbitrary sequences of processes are
stated and proved as corollaries of a general
theorem on isomorphism.

We use the results alluded to in the last
paragraph for proving lower bounds on the
number of messages required to solve certain
problems. We show, for instance, that there is
no algorithm to detect termination of an under-
lying computation using only a bounded num-
ber of overhead messages.

2 Model of a distributed system

A distributed system consists of a finite set of
processes. A process is characterized by a set of
process computations each of which is a finite
sequence of events on that process. Process
computations are prefix closed. i.e. all prefixes
of a process computation are also process com-
putations (of that process). An event on a pro-
cess is either a send, a receive or an internal
event. A send event on a process corresponds to
sending a message to another process. A
receite event on a process corresponds to re-
ception of a message by the process. There is
no external communication associated with an
internal event. For a set of processes P. a send
event by P is a send event by some component
process of P to a process outside P; similarly a
receive event by P denotes receipt by some
process in P of a message sent from outside P.
Communication among processes in P are in-
ternal events of P. We use “e is on P, for event
e and process set P, to denote that ¢ is an event
on some process in P. We rule out processes
which have no event in any computation. We
assume that all events and all messages are

lpA

TS TACERUNWR g - METE NN T T T Ty R e A W NN 8) CIN\
‘ ‘le"\\‘ "-'Ft“‘ﬂl‘ “u &(& 'N'- \ A N0 * ‘ 1' n O #\ ’ t."

41

distinguished; for instance, multiple occurrences
of the same message are distinguished by affix-
ing sequence numbers to them.

Let - be any sequence of events on com-
ponent processes of a distributed system. The
projection of - on a component process p. de-
noted by :,. is the subsequence of - consisting
of all events on p. A finite sequence of events =
is a system computation of a distributed system
means (1) for all processes p. =, is a process
computation of p and. (2) for every receive
event in -, say receipt of message m by process
p. there is a send event, of sending m to p.
which occurs earlier than the receive in :: this
send event will be called the send event corre-
sponding to the receive. We leave it to the re-
ader to show that system computations are pre-
fix closed.

In this paper we consider a single (generic)
distributed system. For instance, when we say
*z is a computation” we mean that - is a com-
putation of the distributed system considered
here. We use computation to mean system com-
putation when no confusion can arise.

Notation. We use x, y. = to denote compu-
tations, p. q for processes and P, Q for process
sets; these symbols may be used with subscripts
or superscripts. The concatenation of two se-
quences y and - will be denoted by (y::). For
sequences y and =, yS:z denotes that y is a
prefix of =; in this case (). z) denotes the suffix
of = obtained by removing y from . The empty
sequence will be denoted by null. The symbol
= is used to denote equalities among sets and
among predicates. The symbol = is used for
definitions. The set of all processes in the sys-
tem will be denoted by D and for any process
set P, P=D-P.

3 Isomorphism

We define relation [p] on the set of system
computations as follows.

Definition. For
x[py=(x,=1,).

In other words. x(p]y means p’s computation
is the same in system computations x and v. In
this case. we say x, v are isomouphic with respect
to p. For a process set P. define relation [P]. on
the system computations. as follows.

system computations X.\:

RN TR
DT 3

L}

v A
A

o

{

. = B

\

7~

-2 T

E B

(}0.04) Q (o]

42

Definition. x(P] y=for all p in P, x[p]y.

Thus x[P]y means that, given only the com-
putations of processes in P we cannot dis-
tinguish x from y. From definition, x[{ }]y, for
all computatians x,y where { } denotes the
empty set. Observe that [P] is an equivalence
relation.

It is convenient to represent all such iso-
morphism relations by an isomorphism diagram:
an undirected labelled graph whose vertices are
computations and there is an edge labelled [P]
between vertices x, v if P is the largest set of
processes for which x[P]y. Observe that every
vertex has a self loop labelled [D] where D is
the set of all processes in the system. Note that
X[D]y. x+y. implies y is a permutation of x.

Example 1. Consider a system with two pro-
cesses, p and q, for which part of the isomor-
phism diagram, showing the relationships
among four system computation. is given be-
low.

From the diagram x[p]y. but not x[q]y. This
means p has the same computations in both x
and y. whereas g's computations in x and y
differ. Computations x and z have the same
computations for both p and q; hence one is a
permutation of the other. There is no direct
relationship between y and w: neither y[p]w
nor y[¢q]w holds. However, there is an indirect
relationship between y and w because y[p]:
and z[¢g]w. We explore such indirect relation-
ships next. [

Definition. Let n>0 and P be process sets,
0<isn.

x[(Py...P)==x[P,...P,_
some computation).

1]y and y[R]:z, for

@ LIS

[3p.9¢ (o]

t}o.a41 G (9]

Fig. 1. An isomorphism diagram

@ [}0.9{)

R R R

K.M. Chandy and J. Misra: How processes learn

Hence., [PQ]=[P]-[Q] where “o™ is the re-
lational composition operator. This operator is
associative (from properties of relations). In
terms of the isomorphism diagram, x[F, ... P]:
means there is a path from x to z whose edges
are labelled with Q,,...,Q,, respectively, where
Q,2P, for all i.

Example | (contd.). We have y[pq]w and ‘

wlgply. Also, trivially, y[qp]z. ylgprq]:.
etc.

We note some properties of isomorphism
relations. In the following, P, P,.....P, Q, de-
note arbitrary process sets and x, y, - denote
arbitrary computations.
1. {P] is an equivalence relation.
2. (Substitution) ([f)=[0]) implies ([2B7]
=[20+]) for arbitrary sequences of process
sets 2, B, 7, 0.

. (Idempotence) [PP]=[P]

. (Reflexivity) x(P, ... PB] x

. (Inversion) x(P,...R]y=y[P,... B,] x

. (Concatenation) For 0<m<n,
3y:x[P ... By y[F. (... B]:
=x[A...RP,P,, ,...P]:=
7. [PUQI=([PTA[Q)
8.(Q=2P)=([Q]<=[P))
9. (P=0Q)=([P]=[Q))

10. Q2 P implies ([QP]=[P]1=(PQ])

These properties follow from properties of
relations and our model. We only sketch a
proof of one part of property 8:

({01 [P)) implies (Q2 P).

If QPP then there is a process p in P-Q.
From our model, p has an event e in some
computation (x:e). Then x[Q](x:e) and

~x[P](x;e). Hence [Q] & [P].

[« RV I V)

3.1 Process chains

As noted in the introduction, the basis for
many operational arguments are process
chains: process p informing g which in turn,
informs r etc. One of our goals is to replace
such concepts by algebraic properties of system
computations. In this section we show how
process chains are related to isomorphism. We
first define proces chains; this definition is
along the lines suggested by Lamport [5].

Definition. For events e, ¢' in a computation =,
¢—<+¢' means:

-y . e e

A

-

LAY, -

=3

5

“all RS e)

Ly

PR S v

-
—

(Yoo iy

-
™

-
B B

w
»

LA

K.M. Chandy and J. Misra: How processes learn

1. ¢ is a receive and e is the corresponding send,
or

2. events ¢, ¢ are in the same process com-
putation and (e=e' or e occurs earlier than
¢’), or

3. there exists an event ¢” such that e—»¢” and
e —e.

For brevity we write e—¢’ when the com-
putation = is understood from context. We will
write e,—e,—...e,_,—e,, as shorthand for
e,—e, and...and e,_,—e,. Observe that e—e
for every event e in z. A computation z has a
rrocess chain (FyP,...P) means there exist
events e,, ¢,,...e,, not necessarily distinct, in z
such that event e, is on P, for all 0<i<n, and

€ & .. E,.

Observation 1. Any occurrence of “P” in a pro-
cess chain may be replaced by “PP™, or vice
versa, since for any event e¢ on P, e—e.

Observation 2. Let x be a sequence consisting of
a subset of events from a computation y. Sup-
pose that for every event e in x: every ¢', where
e—+e, is also in x, and e¢—*se. Then x is a
computation.

3.2 Relationship between isomorphism
and process chain

Theorem 1. (Fundamental theorem of process
chains). Let = be a computation and x a prefix of
= Let P, P,...P. n21, be sets of processes.
Then x[P,P,...P]z or there is a process chain
(RPy...BYin(x,z). O

Proof. Assuming that there is no process chain
(P,...P> in (x,z), we show that x[P,...P]:.
Proof is by induction on n. For n=1, absence
of a process chain (P,) in (x,z) means that
there is no event on P, in (x,z) and hence
x[P]:. For n>1, we show that there is some y,
x=<y. such that there is no process chain
(P,...P_,> in(x,y) and y[P]z; the result then
follows by inductive argument.

Let E be the subsequence of events in (x,:
consisting of the set of events {ele—e where ¢
is in (x,z) and €' is some event on P}. Let y

" =(x: E). First, we show that if e,——»e2 and e,

is in y then e, is also in y and e,—-»e,. this
guarantees (from observation 2) that y is a com-
putation. This result follows trivially when e, is
in x. If e, is in (x.z) then e,—%»¢’, for some

" 2N ,-‘ T""‘ ‘.1 h) 4
e T v R

43

event ¢ on P, and hence e,—»¢' and therefore
e, is in y; the relative order between e,, e, is
maintained by our construction.

Next, we show that y[P]:z; that is, every
event on P, that is in z is also in y. This follows
trivially for events on P, that are in x. Let ¢’ be
an event on P, that is in (x,z). Since e'—e’, €' is
also in E and hence in y.

Finally, we show that there is no process
chain (P,...P,_,> in (x,y). If there is such a
process chain, consider its last event e. Accord-
ing to our construction, event chain e—e’ exists
in (x,z), where ¢ is some event on P. Hence
there is a process chain (P,... P in (x,z). con-
tradicting our assumption. [

We note that the two conditions in the last
sentence of the theorem are not exclusive. Con-
sider two computations =, =’ where

- is (P sends m to R; R receives m
from P;R sends m’ to Q;
Q receives m’ from R),

2"is (R sends m’ to Q:Q receives m' from R)

In z, though there is a process chain (PRQ>.
there is not a “true™ dependence from P to R
to Q: R sends m’ to Q independent of receiving
m from P (as shown in ='). Note that null [P] -
and =’ [Q] =. and hence nuil [PQ] :=. though
(null, =) has a process chain (PQ).

3.3 An application of isomorphism:
how to construct a computation
by fusing separate ones

In this section, we show an application of iso-
morphism: we give a construction to “fuse”
two computations to obtain a new compu-
tation, provided certain types of paths exist in
the isomorphism diagram. We motivate the dis-
cussion by the following observations. Suppose
(x;E) and (x:E) are computations where all
events in E are on a process set P and all
events in E are on P. Then. from definition.
(x:E:E) and (x: E. E) are also computations. be-
cause events in E,E are independent and hence
may be fused in arbitrary order. A similar re-
sult appears in Fischer et al. [2]. The following
lemma is a generalization of this obervation.

Lemma 1. Let x.y.- be computations where
XSy and xS:. Let P.Q be such—hat PuQ=D.
x(P]y and x{Q]:z. Then there exists a com-
putation w where xSw, y[Q]w and z:[P]w. O

X ."‘l' ‘:q‘.ae;' 3055. I, 50 Lt it!

==
E

e %

L

(e B~ > e~y

Tl BTNy

T AT,

AT

9 . o) el i VW el e

D

5 3K

< |

¥

Ol

Y
["_}"-
VIR

oz =
7 X e

-

et ¥

.
s ,

| IS

’ap’--.‘-.o-s_
- - ~
[RO

2 S

Fig. 2. Isomorphism diagram depicting (usion

The relationships among x.y.z and w are
represented by the following commutative iso-
morphism diagram.

Proof. Let w=x; (x.y); (x, =,

From the condition of the lemma. (x. y) has
events only on P and (x,:) has events only on
Q. Since PuQ=D, P~nQ={ } and hence no
process has events in both (x.)) and (x.z). It
follows, from definition of computations, that w
is a computation. Also y[Q]w, -:[P]w and
x < w. as required for proof of the lemma.

Note that, in the construction of Lemma 1,
all events from E and E were present in the
fused computation. We prove a far more gener-
al result below. We show that for any two
arbitrary computations y and z, the projected
computations, y, and zs, may be fused to form
a new computation provided there is a com-
putation x which is a prefix of both y and :,
and no message sent by P in (x.y) is received
by P in (x, y) and no message sent by P in (x, 2)
is received by P in (x,z). This makes intuitive
sense: processes in P can execute all events in y
given only that processes in P execute all events
up to x and similarly for executions of events
on P up to z. However, the statement and proof
of this result are difficult without the notion of
isomorphism. We note that the result may be
easily generalized to fusions of arbitrary num-
bers of computations under similar constraints.

Theorem 2. (Fusion of computations). Consider
system computations X, y.z where xSy and x &

Let P be a set of processes such that there is no
process chain, (1) (PP in (x,y) and (2) (PP) in

- Y
WA IR AN
‘.;V’A:\ ¥ I |*‘" d

K.M. Chandy and J. Misra: How processes learn

x

VAR

P
Fig. 3. Diagramatic representation of fusion theorem

I

VAN
N/

Fig. 4. lnlermedmte step in fusion theorem

z). Then there is a computanon w where,

V<w y[P]w and z[P]w. That is, w consists of

all events on P from y and all events on P from

z. Od

Proof. According to Theorem I, absence of pro-
cess chains as given in this theorem means that,
x[PP]y and x[PP]:.

The theorem asserts the existence of the iso-
morphism diagram in Fig.3. To prove that
such a w exists, label the intermediate point
between x.y as u and between x, = as v in this
figure. Now we apply Lemmal to x.u.t to
obtain a w, as given in Fig. 4.

Now u[P]y and u[P]w; hence y[P]w. Sim-
ilarly z[P]w. This proves the theorem. Rela-
tionships among x,y.z,u,v,w are shown in
Fig. 5. O

The fusion theorem is used later to obtain
lower bounds on the number of messages re-
quired to solve certain problems.

LoRa- ot ga g ot Sav Sk aod

ST

s

4

K.M. Chandy and J. Misra: How processes learn

x
®
P P
ue oV
\ //
\
P P\ /p P
\ /
/
\ /
\\ /
,' o/ o
B v P

Fig. §. Isomorphism diagram depicting proof of fusion
theorem

3.4 Semantics of event types in terms
of isomorphism

We now use isomorphism to state and derive
some important facts about various types of
events. First, note that a process carries out an
internal event or sends a message depending on
its own computation alone. Therefore, if a
process takes such a step in a computation x, it
will also do so in y, if x. y are isomorphic with
respect to this process. An analogous result
holds for internal and receive events. The fol-
lowing principle, which states these facts for-
mally, may be proven from the definition of
system computation.

Principle of computation extension:

Let e be an event on P.

1. e is an internal or send event: (x[P]y and
(x;e) is a computation) implies (y;e) is a com-
putation.

2. e is an internal or receive event: (x;e)[P]y
implies (y —e) is a computation, where (y—e) is
the sequence obtained by deleting e from y. [

Note. In (1). (x;e)[P] (y:e) and in (2), x[P](y
—e).

Corollary. Let e be a receive event on P and let
the corresponding send event be on Q.

. (x{(PuQ]y and (x:e) is a computation) implies

();e) is a computation. 3

Proof. e is an internal event of PuQ. (O

The following theorem follows from the prin-
ciple of computation extension.

45

Theorem 3. Let (x;e) be a computation where ¢
is an event on P.

Case 1. e is a receive:

for every z: (x;e) [PP)z implies x[PP] -
Case 2. e is a send:

for every z: x[PP] z implies (x: e)[PP]:
Case 3. e is an internal event:

for every z: (x;e)[PP)z=x[PP]: O

Proof. We will prove only Case 2: other cases
are similarly proven.

x(PP)z implies there exists y.x[P]y and
y[P]-=.
From principle of computation extension, (y:¢)
is a computation and (x;e) [P] (yie). Also.
(y:e)[P]y. Hence, (x:e)[PP]:z and therefore.
(x;e)[PP)=. O

This theorem captures the intuitive notion
that the set of possible computations. isomor-
phic with respect to P, can only shrink in size
as a result of a reception as computations
which do not include the corresponding send
are ruled out. Similarly, the set of possible com-
putations, isomorphic with respect to P cannot
shrink as a result of a send: after the send.
additional computations which accept the mes-
sage sent are isomorphic while all prior isom-
orphic computations remain isomorphic. An in-
ternal event can neither expand nor shrink the
set of isomorphic computations.

4 Knowledge

As we have remarked earlier. predicates of the
type P knows b at x may be defined using
isomorphism. We explore properties of such
predicates in our model. We show that they
satisfy the “knowledge axioms™ as given in
{3.6]. We prove a general result which shows
that certain forms of knowledge can only be
gained or lost in a sequential fashion along a
chain of processes. That is. if b is false for a
computation and later. B, knows P, knows... P,
knows b (this represents knowledge gain). then
there is a process chain (BP,_, ... B) between
these two points of the computation. Con-
versely, if B knows P, knows.TF, knows b and
later. b is false (this represents knowledge loss).
then there is a process chain (B P, ...P) be-
tween these two points of the computation.

Tt A e e N N M AN PR

{

e

T e T ek

| s R

.

4 0
4
2
L
g)
h tL)

- BT W YD e
8 25

54

s
"1.
Sy

o

5
g1

A7 '

A 3
Nt

'-j

N

BOIREY
RO

Crucial to our work is the notion of local
predicates: a predicate local to p can change in
value only as a result of events on p. We show
that local predicates play a key role in under-
standing knosledge predicates.

4.1 Knowledge predicates

Let b denote a predicate on system compu-
tations and “b at x” its value for computation
x. Our predicates are total, i.e. for each x,b at x
is either true or false. We furthermore assume
that x[D]y implies (b at x=b at y) for every
predicate b. Thus predicate values depend only
upon computations of component processes and
not on the way independent events are ordered
in a linear representation of the computation. A
predicate ¢ is a constant means ¢ at x=c at),
for all computations x,y. We now define (P
knows b) at x.

Definition. (P knows b) at x=
for all y: x{P]y:bat y

Note that b may itself be a predicate of the
form Q knows b’ in the above definition. We
next note some facts about knowledge pre-
dicates. In the following, x, y are arbitrary com-
putations, b, b’ are arbitrary predicates and P.Q
are arbitrary sets of processes. All facts are
universally quantified over all computations.
We use the convention that P knows Q knows b
at x is to be interpreted as (P knows (Q knows
b)) at x.

1. P knows b at x = for all y: x[P]y: P knows
baty
2. x[P]y implies [P knows b at x = P knows b
at y]
3. (P knows b) implies (P wQ knows b)
4. (P knows b) implies (b)
5. (P knows b) or (~ P knows b)
6. (P knows b) and (P knows b') = P knows (b
and b')
7. ((P knows b) or (P knows b')) implies
(P knows (b or b))
8. (P knows ~ b) implies (~ P knows b)
9. (P knows b) and (b implies b’)) implies
(P knows b’)
10. P knows P knows b = P knows b
11. P knows ~ P knows b= ~ P knows b
12. P knows ¢ or P knows ~c. for any constant c.

These facts are easily derivable from the defini-
tion of knows. We give a proof of (11), whose
validity in other domains have been que<tioned
on philosophical grounds [3].

R T T D L R o e

K.M. Chandy and J. Misra: How processes learn

Lemma 2. P knows~P knows b= ~P knows

b. O

Proof. P knows ~ P knows b at x
=for all y: x[P)y: ~P knows b at y,
from definition
=forall y: x[P] y: thereexists z: y[P]z: ~bat z,_
from definition
=there exists z: x[P]z: ~bat =,
since [P] is an equivalence relation
=~Pknowsbatx.

There are situations where multiple levels of
knowledge such as, P knows Q knows b, are
useful. For instance, consider a token bus which
is a linear sequence of processes among which a
token is passed back and forth; processes at the
left or right boundary have only a right or left
neighbor to whom they may pass the token;
other processes may send it to either neighbor.
There is only one token in the system and
initially it is at the leftmost process. Consider a
token bus with five processes labelled p. g, r. s. ¢
from left to right. When r holds the token,

r knows ((q knows (p does not hold the token))
and

(s knows (t does not hold the token)))

Relations of the form [PQ]., with multiple
process sets, arise from predicates with muitiple
occurrence of knows;

For instance:

p knows q knows b at =

=for all y: x[p]y: q knows b at y

=for all y: x{p]y: (for all z: y[q]z: b at =)
=for all z: x[pq]z:bat =

4.2 Local predicates

Let b be a predicate on system computations.
and P a set of processes. We define a predicate
P sure b as follows.

Definition. (P sure b) at x=((P knows b) at x or
(P knows ~b) at x).

In other words (P sure b) at x means that P
knows the value of b at x.

We define unsure as negation of sure.

Definition. P unsure b= ~ P sure b.

Hence, (P unsure b) at x=[(~P knows b) at x
and (~ P knows ~b) at x].

Definition. b is local to P=for all x: (P sure h)
at x.

acd ac g o b ot and Slicalihad h-ats ol abin-ata o h/ ok’ dia s gnt ok Bad Bap Bap J

y Y

fj K.M. Chandy and J. Misra: How processes learn
te That is, the value of b is always known to P.
Local predicates capture our intuitive notion of
\ a predicate whose value is controlled by the
actions of processes to which it is local.
We note the following facts about local pre-
. dicates; in the following, b is an arbitrary pre-
5 dicate and P, Q are arbitrary sets of processes.
Q‘
1. (b is local to P and x[P] y) implies (b at x=b
at y)
‘ 2. b is local to P implies (b=P knows b)
-’-".: 3. bis local to P=(~b) is local to P.

4. b is local to P implies [Q knows b=Q knows
P knows b]

S. (P knows b) is local to P.

6. b is local to P and b is local to Q and P,Q are
disjoint implies b is a constant.

7. b is a constant implies b is local to P.

8. (P sure b) is local 1o P.

Proof of (1) follows from definition of knowl-
edge and local predicates. (2) and (3) follow
trivially. (4) follows from Q knows b at x = for
all y: x[Q]y: b at y=for all y: x[Q])y: P
knows b at y (since b is local to Py=Q knows P
knows b ar x. (5) follows from, (P kinows P
knows b or P knows ~ P knows b) = (P knows b
i’, or ~P knows b) = true. Proof of (6) is impor-

= >

L Taaa

_ tant and hence is given below as a lemma. (7)
i and (8) are trivially proven from definition.

é Lemma 3. b is local to disjoint sets P,Q implies
D, bis a constant.

Proof. We show that b at x=>b at null, for all x.
Proof is by induction on length of x.

-

b at null=5b at null,

b at (x;e)=b at x, because event ¢ is not on P
or e is not on Q, and hence (x;e)[P]x or
(x:e)[@] x: then the result foilows from proper-
ty (). O

. I

For a system of processes. b is common
knowledge is defined as the greatest fix point of

- the following equation.
b9 b is common knowiedge = b and (p knows b)
is common knowledge, for all processes p. In-
o tuitively, b is common knowledge means b is
- true. every process knows b, every process knows
: that every process knows b, etc.
o Halpern and Moses [3] have shown that
Vs common knowledge cannot be gained. if it was
.l not present initially, in a system which does not
admit of simuitaneous events. The following
:$| corollary to lemma 3 shows that common
»

x A TAVATETEFR ALY PR e (R WS,
B k R Wa s A .,h) \“ 't, rp LRI w X

47

knowledge can neither be gained nor lost in
distributed systems.

Corollary. In a system with more than one pro-
cess, for any predicate b, b is common knowledge
is a constant. [

Proof. For any process p,b is common knowl-
edge = p knows (b is common knowledge). Hence. b
is common knowledge is local to every p. Apply-
ing lemma 3, b is common knowledge is a con-
stant. O

It is possible to show that even weaker
forms of knowledge cannot be gained or lost in
our model of distributed systems. Process sets
P,Q have identical knowledge of b means.

P knows b=Q knows b

Corollary. If P,Q are disjoint and have identical
knowledge of b then P knows b (and also Q
knows b) is a constant. [

Proof. P knows b is local to P and Q knows b is
local to Q. From P knows b=Q knows b. they
are also local to Q and P respectively. The
result follows directly from lemma 3. O

Corollary. If P.Q are disjoint and P sure b=Q
sure b, then P sure b (and also Q sure b) is a
constant. [

4.3 How knowledge is transferred

We show in this section that chains of knowl-
edge are gained or lost in a sequential manner.

Theorem 4. For arbitrary process sets B,P,.
nz 1. predicate b and computations x. y.

(B knows...P, knows b at x and x[R ...R]y)
implies (P, knows b at y). O

Proof. Proof is by induction on n. For n=1. R '
knows b at x. x[R]y implies B, knows b at y. ‘
trivially.

Assume the induction hypothesis for some
n—1,n>1, and assume

F, knows ... P, knows b at x and x[R... P] .

We shall prove P, knows b at 1. !
From x{PR... P]y. we conclade that there is
a o such that,

x{R...P_,]zand :[P]y

W oy s -

-

N D X IR~

48

From x[R ...P,_,]- and R knows ... P,_, knows
(P, knows b) at x, we conclude, using induction,
P._, knows P, knows b at :=. Hence, P, knows b
at 2.

Since z [Bly, P knows baty. O

Corollary. For arbitrary process sets F...PB,
nz |, predicate b and computations x, y,

(R knows...P,_, knows ~P, knows b at x and

X[R...R]y) implies ~P, knows baty. O
Note. For n=1 antecedant is, ~ P, knows b at x.

Corollary. Theorem 4 holds with knows replaced
by sure in **P, knows”.

Theorem 4 can be applied to (1) x<y (knowl-
edge is lost) and (2) y < x (knowledge is gained).
Using theorem 1, we can deduce that there is a
process chain (B... P> in the former case and
{(P...B) in the latter case. We first prove a
simple lemma about the effect of receive or
send on knowledge: we show that certain forms
of knowledge cannot be lost by receiving nor
gained by sending.

Lemma 4. (How events at a process change its
knowledge)

Let b be a predicate which is local to P and
{x: e) a computation where e is an event on P.

1. e is a receive: {knowledge is not lost}

(P knows b at x) implies (P knows b at (x;e))
2. e is a send: {knowledge is not gained}

(P knows b at (x; e)) implies (P knows b at x)
3. e is an internal event:

{knowledge is neither lost nor gained}

(P knows b at x)=(P knows b at (x;¢)). O

Proof. We prove only (1). Consider any z such
that (x;e)[P]:. We will show b at z and hence
it follows that P knows b at (x;e).

Since z[P] z, we have (x;e)[PP] =.

From theorem 3, since e is a receive, x[P P]
<. Since b is local to P,

P knows b= P knows P knows b.
From theorem 4,

(P knows P knows b at x, x[P P] z) implies
(P knows b at 2)

(P knows b at z) implies (b at =).
This completes the proof. [

B A A A2 R X L, O MO TR AL A S AR AR S

K.M. Chandy and J. Misra: How processes learn

Corollary. (b is local to P, ~P knows b at x. P
knows b at y, x<y) implies (P receives a message

in(x,y). O

Corollary. (b is local to P,P knows b at x, ~P
knows b at y, x £ y) implies (P sends a message in

). O

Theorem S. (How knowledge is gained) Let
X,y be computations where x<y, ~(P, knows b)
at x and (B, knows ... P, knows b) at y, for arbi-
trary process sets B ...P, n21. Then there is a
process chain (P,... R in (x,y). Furthermore, if
b is local to P, then P, has a receive event in
(x, y) such that b at z holds for every prefix = of
y which includes the corresponding send
event. [

Theorem 6. (How knowledge is lost) Let x. y
be computations where x<y, B knows...P,
knows b at x and ~ P, knows b at y, for arbitrary
process sets F,... P, n2 1. Then there is a process
chain (B, ...B) in (x,y). Furthermore, if b is
local to P, then P, has a send event in (x,y). O

Observe that the statements of the two theo-
rems are not entirely symmetric for receive and
send events. The reason is that every compu-
tation including a receive must also include the
corresponding send, but not conversely.

5 Applications of the results

We discuss a few applications of the theory
developed so far in the paper.

5.1 When is a process unsure about a predicate?

We show that it is impossible for processes P to
track the change in value of a local predicate of
P, at all times; P must be unsure about the
value of this predicate while it is undergoing
change.

Lemma 6. (Interval of uncertainty:) Let b be a
predicate local to P. Let, b at x+b at (x:e) for
some computation (x;e). Then P unsure b at x
and P unsure b at (r;e). O

Proof. Since b is local to P and its value chang-
es as a result of event e, e is not on P. There-
fore. x[P](x:e) and hence P knows b at x=P
knows b at (x;e). Since b at x+b at (x;e). both
P knows b at x and P knows b at (x:e) are false.
Analogously, P knows ~b at x and P knows

T

h_____.______r
g

putation (x; e), where
bat x+bat (x;e)

send event on P,

receiteon P (O

m——

b is local to P, hence: b at x=b at y
and, b at (x;e)=b at (y;e).

R
7 g

at y+b at (y;e).

K.M. Chandy and J. Misra: How processes learn

predicate b of P? It follows that P must be

4 unsure about b for event e to occur. Further-
g:, more, we show that if e is internal or send then
a necessary condition for occurrence of e is that
P knows P unsure b before application of e.

& Theorem 7. Let b be local to P. For a com-

(P knows P unsure b) at x, if e is an internal or

(P knows P_unsure b) at (x;e), if e is internal or

Proof. Consider any y for which x[F] y. From
the principle of computation extension, (y;e) is
also a computation; hence (x; e)[P](y; e).

From, b at x#b at (x;e) it follows that :

Hence, from lemma (6), P unsure b at y.

49

that f(x;e) and (3) P sends no message as long
as f holds. Under these constraints, we show
that P is always unsure of failure of P. In fact,
we show that P knows P unsure f at all com-
putations y. Note that we do not require failure
to persist, i.e. it is entirely possible to have
x<y f(x)and ~ f(y)

Theorem 8. P knows P unsure f at y, for all
y, O

Proof. If ~ f(y), there is an internal event e on
P such that f(y;e). From Theorem 7, P knows
P unsure f at y. If f(y), then from the fact that f
is false initially, there is some (x;e). (x:e)Zy.
such that, ~ f(x) and f(x;e). Without loss in
generality, we may assume that P stays failed
after (x;e) until y. Since e is an internal event
and P staxs failed after (x;e). there is no send
event on P in (x,)). Hence. from coroliary to
Theorem 7 P knows P unsure fat y. O

5.3 Mutual exclusion

e
t."‘.'r_'x_

N ~b at (x;e) are both false. This completes the We model failure of P as follows. Let f be a
proof. (O local predicate of P denoting that P has failed.

We assume that (1) f is initially false, and (2) P]
i What does hth’ﬁ l;mma 'anlylabo‘:.t the may fail at any time, ic. for every x for which
event e on P which changes the value of local _'¢(y) “ipere is an internal event ¢ on P such

From the definition of knowledge, P knows
P unsure b at x. The other part is similarly
proven. [

Consider a system of processes in which every
process p has a local predicate c¢s, and for
every pair of processes p.q and every compu-

Corollary. Let b be local to P. For a compu- tation x, ~(cs, and cs,) at x. Intumvel) cs,

tation (x;e), where e is an internal event on P,

if:

bat x+bat(x:e)

in(x,y):

then for any y.x <y, where P has no send event

denotes that p is in its “critical section and the
restriction that no two processes can simulta-
neously be in their critical sections. is captured
by the last requirement. We show that in every
computation of a solution to the mutual ex-

_ clusion problem (in our model), there is a pro-
P knows P unsure baty. [cess chain {p,...p,). where p, is the ith process

- to enter its critical section.
Proof. From Theorem 7, P knows P unsure b at

x. Since P_sends no message in (x.y), from Theorem 9. For any x.y.x<). cs, at x and cs
Lemma 4, P can lose no knowledge and hence, 4 y implies that there is a process chain {pq) in
P knows P unsure bat y. (O x.3). O

5.2 Detection of process failure is impossible Proof. Observe that cs, implies ~cs,. and ~cs,
implies (q knows ~cs) Also. cs, mrphes (~q
knows ~cs,). Hence, (cs at x) implies (p knows
q knows ~cs, at X) ancf (cs, at y) implies (~q
knows ~cs, at v). The result follows from theo-

Traditional techniques for process failure de-
tection based on time-outs assume certain exe-
cution speeds for processes and maximum de-
lays for message transfer. It is generally accept- 6
ed that detection of failure is impossible with- T¢™ (6) 0 -

out using time-outs, a fact that we prove for- We can show. based on the observation
mally. given below, that a solution to the distributed

------ '."""".".‘".H"‘“ﬂﬁ!““'ﬂ'ﬂ‘
M e dn aie fop gce fim

50

dining philosophers problem appearing in [1]
requires no more than twice the number of
messages in an optimal scheme. In the distrib-
uted dining philosophers problem, philosophers
are placed at—vertices of an undirected graph
and one fork is placed on each edge. A philo-
sopher requires forks on all incident edges to
eat and hence neighboring philosophers cannot
eat simultaneously.

Observation. For neighboring philosophers p.q,
there is a process chain {pgq) in (x,y) where p
eats at x, q eats at y and x=<). Hence at least
one message must be sent by p to ¢ between an
eating session by p and a subsequent eating
session by q. The solution in [1] employs two
messages between an eating session by p and a
subsequent eating session by q.

5.4 Complexity of termination detection

We show that any algorithm which detects ter-
mination of an underlying computation re-
quires at least as many overhead messages, in
general, for detection as there are messages in
the underlying computation. We prove our re-
sult by considering a specific underlying com-
putation.

Consider a system of two processes 4. B in
which messages may be sent from A to B and
from B to 4. Each process is initially in a
tossing state. Each process in tossing state de-
cides nondeterministically (by a coin toss, for
instance) to enter either a receiving or a send-
ing state. A process in the receiving state waits
until it receives a message and then returns to
the tossing state. A process in the sending state
sends a message and then returns to the tossing
state. If both processes are in the receiving state
and every message sent has been received, then
both processes will remain waiting forever. The
goal of the termination detection algorithm is
to detect such a situation.

In the sequel, we use underlying computation
to mean the computation associated with coin
tossing, sending and receiving of messages as
described above. The termination detection al-
gorithm superimposes an overhead computation
on the underlying computation at each process;
we use computation to mean the underlying
computation and overhead computation togeth-
er. Overhead messages and underlying messages
belong to the corresponding computations.

The overhead computation at a process can
observe the state of the underlying compu-

K.M. Chandy and J. Misra: How processes learn

tation, but cannot affect it. The overhead com-
putation may have its own associated states
and it may send messages (to the overhead com-
putation at the other process) even when the
underlying computation is waiting to receive.
However, a message is received only when the
underlying computation is waiting to receive.
We require that whenever the termination de--
tection algorithm reports termination, the
underlying computation has terminated (both
processes are in receiving state and there is no
underlying message in channels); furthermore,
for every computation x in which the underly-
ing computation has terminated, there is a com-
putation y, x £y, in which termination is report-
ed by the overhead computation at one of the
processes.

We show that for any k.k=0. there is a
computation in which k underlying messages
are sent and received and at least k overhead
messages are sent. The plan of the proof is as
follows. We first show that in order for termi-
nation to be detected, an overhead message is
sent by some process, without its first receiving
a message, after the underlying computation
terminates; this fact is proven directly from the
theorem of knowledge gain, because detecting
termination amounts to gaining knowledge.

Next, we show that a process is sometimes
required to send an overhead message even
when the underlying computation has not ter-
minated, because the computation may be
isomorphic (with respect to this process) to a
computation in which the underlying compu-
tation has terminated. Using these two results,
we construct a computation, of the required
type, for any k, k=0.

Theorem 10. For any k., k20, there is a com-
putation in which k underlying messages are sent
and received and at least k overhead messages
are sent. [

Proofs. We will prove a slightly stronger result.
I(k), for any k, k=0, where I(k) is: there is a
computation in which k underlying messages
are sent and received, at least k overhead mes-
sages are sent and both processes are in toss-
ing state at the end of the computation. Proof
is by induction on k.

For k=0: I(0) holds for the null compu-
tation, from the initial condition.

Let x be a computation for which I(k) holds
for some k,k=0. We show a computation = in
which I(k + 1) holds.

s PR RN T Tw Y.

el S
N

dod

XA

aA_a_t

ergrweTury

K.M. Chandy and J. Misra: How processes learn

Let tr(trg) denote an internal event at A(B)
whereby the process transits from tossing state
to receiving state; similarly, let s (tsg) denote
the transition from the tossing to sending state.

Consider the computation x'=(x;tr,;trg).
Since no underlying message is in transit in x
and both processes are waiting to receive in
x'.x" has a terminated underlying computation.

For each process. “process is in receiving
state™ is a local predicate of the process. This
predicate value, for each process, is false at x. If
a process (say B) detects termination at some
v.X'S), then B knows A is in receiving state at
y. Therefore, B gains knowledge about 4 and,
applying the knowledge gain theorem (theo-
rem 5). there is a process chain (4. B) in (x', y).
Therefore, in general, either there is a process
chain (A4 B) or a process chain (B A4) in (x,y).
Let)’ be such that x=<)' <}, (x,)’) contains no
process chain {(AB) or {(BA) and (x,)’) con-
tains a message send (which must be an
overhead message) by some process. say A.

Let w=(x;tr,: tsz: B sends underlying mes-
sage). Since there is no process chain (4 B) or
{BA) in (x,)) or (x.w), we can apply the fu-
sion theorem (theorem 2) to ' and w to obtain
a computation w'. where x<w', w[B]w and
w'[A4]). In computation (x,w’), B has sent an
underlying message and A has sent an overhead
message before receiving the underlying mes-
sage. To complete the proof, we note that
there is an extension = of w’ in which A receives
the underlying message sent to it by B. Com-
putation : satisfies I(k+1). [

6 Discussion

We have shown that isomorphism between
system computations with respect to a process
is a useful concept in reasoning about distribu-
ted systems. Isomorphism forms the basis for
defining and deriving properties about knowl-
edge. “Scenarios™ have been used [7] to show
impossibility of solving certain problems: in our
context, a scenario is a computation, and iso-
morphism is the formal treatment of equiva-
lence between scenarios. Theorems on knowi-
edge transfer provide lower bounds on numbers
of messages required to solve certain problems.
We have used isomorphism as the basis of fu-
sion theorem and related isomorphism to se-
mantics of send. receive and internal events.

In this paper, we have not defined processes

Aot Aud o h AtE acharh avi - ik - adih-ad bl -l il - nlliiel - el - alli e e f i s - aind naih - alu - anid - iy

51

in terms of their states. The notion of isomor-
phism between computations could be defined
in terms of process states as follows: two com-
putations x and y are state-isomorphic with re-
spect to a process p means the state of p after x
is the same as its state after y. Observe that x
and y are isomorphic with respect to a process
implies they are state-isomorphic with respect to
that process. With knowledge defined in terms
of state-isomorphism, a process may lose
knowledge by an internal event, that is. by
merely by changing its state. However. knowl-
edge can be gained only be receiving messages.
In other words, processes may “forget™ on their
own but cannot learn without receiving infor-
mation. The theorem of knowledge transfer ap-
plies even with knowledge defined in terms of
state-isomorphism. This is an area worth pursu-
ing, as it may provide insight into designs of
processes.

Our model does not have the notion of
time. If there is a global clock common to all
processes then processes may learn or forget
merely by the passage of time. For instance. in
time-division multiplexing, the mutual exclusion
problem is solved by letting the i-th process be
in its critical section during the i-th slot in the
time cycle. In this case. a computation is a
tuple consisting of the “current™ time and a
sequence of timed-events where each timed-
event is a pair (time., event). The concept of
isomorphism remains valid. though the knowl-
edge transfer theorems no longer hold. because
knowledge can be gained and lost merely by
the passage of time.

It is tempting to define belief in terms of
isomorphism as follows: process p believes b at
x means b holds for most (in measure-theoretic
terms) computations isomorphic to x with re-
spect to p. Unfortunately, there do not appear
to be clean results on the gain/loss of belief or
belief transfer.

In this paper. when we say a process knows
b. we allow b to be an arbitrary predicate: b
may be temporal. for instance of the form:
eventually b'. For example. in a commit pro-
tocol a process committing itself to a value ¢
knows that all correct processes will eventually
commit to r. Results about knowledge transfer-
gain or loss-still hold.

Acknowledgement. We are indebted to Shmuel Katz. Joe
Halpern. E.W. Dijkstra and Bengt Jonsson for their com.
ments. Particular thanks go to Ernie Cohen for a careful
reading of the manuscript and insightful comments.

K.M. Chandy and J. Misra: How processes learn

52

. Hintikka J (1962) Knowledge and belief. Cornell Uni-
versity Press

5. Lamport L (1978) Time, Clocks and the orderings of

events in a distributed system. Communications of the

o

References

=

e e man

1. Chandy KM, Misra J (1984) Drinking philosophers

problem. TOPLAS, October 1984

2. Fischer MJ, Eymch N, Paterson M (1985) Impossibility
of distributed consensus with one faulty process. J

. ACM, April 1985

3. Halpern JY, Moses Y (1984) Knowledge and common
knowledge in a distributed environment. ACM SIGAC-
T-SIGOPS Symposium on Principles of Distributed

ACM 21: 558-564

6. Lehmann D (1984) Knowledge, common knowledge,
and related puzzles. ACM SIGACT-SIGOPS Sym-
posium of Principles of Distributed Computing, Van-

couver, Canada, August 1984 -
7. Lynch N&Fischer M (1982) A lower bound for the

time to assure interactive consistency. Information Proc
Letters 14, 4, June 1982

H Computing, Vancouver, Canada, August 1984
K

AR
] [N
P

Y
b

i
———— e

N

DS
‘\l;th":;a,

e Sym

{
N

7

G

~ W 55-

Correction to the Paper:

A Really Abstract Concurrent Model and

its Temporal Logic

by: Barringer, Kuiper and Pnueli

Not all the positive operators of the Real Temporal logic are continuous. All
of them are monotonic. We distinguish two types of continuity. An operator p(X)
is defined to be V-continuous if it satisfies

o(V r) =V ol»)

<w I<w

It is defined to be A-continuous if it satisfies

o(A p) = A elp)

<w <w
The following operators are V-continuous:
V,A, @, €, 2X.(pU X), A X.(pS X)
The following operators are A-continuous:

VoA, B, B,AX.(XUg),AX.(XS9q)

A general equation: X = p(X) where ¢ is a monotonic operator has both
a minimal and a maximal fixpoint solutions, denoted by uX.© and v X.p respec-
tively. These solutions can be obtained by limits of approximations which for a
general monotonic operator must be carried to an ordinal order. They can be
defined by:

p?,(X) = X,

For a non-limit ordinal (or finite index)

pIH1(X) = p(p?(X))

For a limit ordinal 8

Ax) =\ e3(X)
a<p

WETRERET e 4 8 a8 2 oa- g s a-a s aca i e dia hd e Ala Al Aie el

|

o

!

»

For every monotonic ¢ there exists an ordinal a such that
uX.p = py(F)

If © is also vV-continuous then:

pX.p=4(F) = \[¢'(F)

<w

o N5

Similarly, for approximating the maximal fixpoint we define:

PA(X) =
Pa+1(X) = p(p%(X)) For a non-limit ordinal a + 1

YA(X) = A ¥&(X) For a limit ordinal 8
a<p

S 2l

= 24

For every monotonic o, there exists an ordinal a such that

vX.o = pa(T)

A

If p is also A-continuous then:

vX.o=p%(T) = \ ¢'(T)

<w

'Yy, |

200

M = B

lr~'0 D

" . LY 'r bl b "“
MO NI) - 3 S v. -s. ATHEN
Sy l";‘l.al" “"""'! i ‘i‘b,“.“.“‘;',‘ve:”,‘?‘<ll.t n‘.‘:‘.h‘ ¥ 5"”31’!’!‘ 90“ .‘ W .'" " "‘n"'n‘h "‘.‘ NN Qt‘& 3 '.l .QI ‘ gl

e
DRI

OO0 d d "“ la?
O A i PO o SR A,

A Really Abstract Concurrent Model
and its Temporal Logic

Howard Barringer(!)
Ruurd Kuiper(V
Amir Puyeli(?

Extended Abstract

July 1985

(1) University of Manchester, Manchester, England
(2) Weizmann Institute of Science, Rehovot, Israel

Abstract. In this paper we advance the radical notion
that a computational model based on the resls provides
a more abstract description of concurrent aad reactive
systems, than the conventional integers based behavioral
model of execution segsencea The real model is stud-
jed in the setting of temporal logic, and we illustrate its
advantages by providing a fully sbsirect temporal seman-
tics for a simple comcurrent language, and ar example
of verification of a concurrent program within the real
temporal logic defined here. It is shown that, by impos-
ing the crucial condition of finite variabdity, we achieve a
balanced formalism that is insensitive to finite stuttering,
but can recognize infinsie stuttering, a distinction which is
essential for obtaining a fully abstract semantics of non-
terminating processes. Among other advantages, going
into real-based semantics obviates the need for the con-
troversial representation of comcurreacy by interleaving,
and most of the associated fairness constraints.

Introduction

Temporal logic is, by now, a widely accepted formal
tool for the specification and verification of concurrent
and reactive systems (see [MP1], [Lal}, [OL], [HO}, [SMS),
|CE], [CM]| and many others). The underlying time struc-
ture upon which those systems are based is discrete, and,
in the linear temporal logic case, is isomorphic to the non-
negative integers and models the execution sequences that
the specified program generates.

The research was supported in part by SERC grant
GR/C/05760.

Part of the research of the third author was supported by
ONR grant N00014-85-K-0057 while visiting the Univer-
sity of Texas at Austin.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM-0-89791-175-X-1/86-0173 $00.75

Sanhghehel

» » ram

An important step in the construction and justifica-
tion of temporal proof systems is the definition of tem-
porsl semantics, which constructs for a given program P
a characteristic formula ¢p, sometimes denoted by [[P]],
such that ¢p is true precisely over all the admissible exe-
cutions of P. Such definitions have been given for global
systems in [Punl}, [MP2], and in a more syntax directed
style, suitable to compositional proof systems in [BKP1),
[BKP2J.

When comparing the temporal semaatics of concur-
rent programs with other semantic definitions we find that
they are deficient in one respect. Namely, they do not
achieve fall sbstractness. Full abstractness ([Ml]) is a
most important criterion which requires that the seman-
tics level of detail should match the desired level of ab-
stractness. In particular it requires that any two programs
that we wish to consider equivalent, should be assigned
identical semantics. For sequential programs we can easily
say that it was the strive towards full abstractness that
led from the overly detailed operational semaatics into
the much more satisfactory demotational domain-based
semanties.

Consider the following two program segments that
represent modules in a concurrent program:

P:z:=12:=2 2:=2 , and
Py:z=1;2:=2,2:=2;, 2:=2

They differ by the number of dummy z := = assign-
ments separating the two externally observable instruc-
tions z := 1 and z := 2. At the qualitative level that
we want to analyze such concurrent programs, these two
program segmeats should be considered equivalent.

Let us examine whether their temporal semantics
are indeed identical. We consider first the logic [® =
L(O, U) presented in [MP1] and other related works. This
logic uses the basic operators O (next time) and U (until),
over an integer-like execution sequence.

Without giving the precise temporal semantics of P,
and P; we can still explain how they differ. The tem-
poral semaatics of P (in the L? logic) requires that ia
any computation sequence of Py, the 2= 1and 2 = 2 are

{ v LR AT 5, ChaR o "SI K
'y I.:'l.: W YN "'h N -‘ A < -r'(- 0 *‘»

=

a

B R 9%

-

separated by of leset 3 computation steps (or two interme-
diate states). In P, the lower bouad is only two computa-
tioa steps. Comsequently the L®? semantics distinguishes
between P, and P;, and hence is not fully abstract.

Lamport perceived this lack of abstractness in the L®
logic and attributed the problem to the next-time opera-
tor. Consequently, she temporal logic that he works with
([Lal], [OL]) is L* = L(U), which uses only the uatil
operator (or an appropriate equivalent). He also formu-
lated the requirement that, in order to be abstract, the
logic must be insensitive to stuitering, which he defined
as finite consecutive duplication of some states. Indeed
any execution sequence of P; may be obtained from some
execution of P, by duplication of some states, and the
semantics that would be assigned to P; and P; in the L+
logic are identical:

[P = [P,] = Ol(z =)t* (2 = 2)]

where we use the defined operator pli*g = (p A plig).

Unfortunately, while this next-less logic provides
an abstract semantics for finite processes, i.e., having
bounded executions, it raises new problems when we go to
infinite processes. We may interpret the view represented
by Lamport's approach by saying that there is no absolute
time scale against which executions are measured. Time
advaunces only when there is a {state) change. Clearly,
such a view would naturally ignore any finste periods of
no change. However, by the same token, it would also
ignore (or collapse) infinite periods of no change, which
is unacceptable.

Coansider the following recursive procedure
Pelz:=2 P|

where it is assumed that the process P owns the vari-
able z, in the sense that P is the only process which may
modify z.

The common association of semantics to such a pro-
cedure is to form a fixpoint equation for a temporal predi-
cate, where the right hand side of the equation is obtained
from the semantics of the procedure’s body. We therefore
look for the mezimal solution to the equation:

X =3uf(z=u)it((z =u) A X))

It is not difficult to see that the maximal solution is
X =T, i.e., all possible behaviors, in particular those that
arbitrarily modify 2. This can be explained by the fact
that the procedure P produces infinite stuttering which
the L* semantics consumes in zero time, and leaves the
rest of the execution unrestricted.

If in comparison we consider the semantics assigned
to this process by the L?P logic, we replace Y+ by U®,
deflued as rl{®q = r A O(rlig). Then the solution is

X=3u olz=1y)

Ta%t; W
ey e

174

ie., z is continuously preserved, which is what we intu-
itively expect.

Thus we find that L? is unsatistactory because it is
sensitive to finite stuttering, while L+ is unsatistactory
because it is insensitive to infinite stuttering.

These difficulties are not specific to temporal seman-
tics. To the best of our knowledge, no adequate composi-
tional semaatics of concurrent programs which satisfies all
of the four following requirements, has yet been proposed.

1. Allows nondeterminism in the processes.
2. Treats fair parallelism.

3. Is fully abstract, in particular is insensitive to fi-
nite stuttering.

4. Properly treats divergent processes, in particular
infinitely stuttering processes.

Most of the works that did propose semantics of con-
current programs are usually deficient in points 2 or 4
or both. Point 4 is of course highly subjective, and we
have our own interpretation of what the “proper” treat-
ment of nonterminating processes should be. By this
interpretation nontermination should not be coansidered
catastrophic, and a silently divergent (inflnitely stutter-
ing) process should have no effect on any process running
in parallel, except when termination of the full system is
considered, which we ignore in this treatment. Thus if we
define the silently divergent process:

1 = [P whére P <« { skip ; P]|
we would like to have

i =~Q

for any process Q.

Usually, in works such as [HM|, [dBMO], [Br|, the
silently divergent process 1 is treated either as catas-
trophic (the Smyth view) or as chaos (completely unspec-
ified process) which leads to equivalences of the form

(1lQ)=~1

In our previous work ((MP2], [BKP1], [BKP2|) using
L? we usually achieved requirements 1, 2, and 4 but had
to give up on 3. In this paper we suggest that linear tem-
poral logic with the time structure of the (non negative)
resl numbers provides a more abstract logic than that of
the non negative integers, and succeeds in meeting all the
four criteria above.

Temporal Logic of the Reals (TLR)

Let V = L UG be a set of variables which is
partitioned into L = (,...} the locel variables, and
G = (uy,...} the global variables. For simplicity we as-
sume that some of the variables range over a dafs domain,

22E7

-

o sl

v
-

b o g BN ¢

. >, "X
T "™

,‘

e

,.4
rary |q

o,

s

Y.
o RSO

Er

O o

22y

o o AN By o

bt

PR RS

LIS vy

-

-

et
=

by
B

| =y

mr =55

aad the others, which we call propositions, range over the
boclean domain {F,T)}.

A model over V is an assignment a that assigns to
each variable v € V and each non-negative real number
£ 2 0, a value a(v,) from the appropriate domain. The
asssigamest a is required to satisfy:

a) Uniformity of global interpretation -
For each global varisble ¥ € G, a(u,!) is indepen-
dent of L

b) Finite variability -
for each local variable y € L there exists a denumer-
able sequence:

0=ty <t <lg<... with iy = 00

such that the value of a(y,) is uniform within each
opea interval (4, 8i41), Le., for every ¢, ¢/, i t; <t <
¥ <ty then afy,t) = afy, V).

Condition b) guarantees that there could be no inf-
nite variability within a finite interval, and that the inter-
pretation of each varisble can be decomposed into count-
ably many opea intervals of constant value. Note that we
do not restrict the values at the break-points &, which
could be different from the values of their left or right
seighbor intervals.

'l‘hetemponlloacveeouiderhbmdoltheopeb
ators U (watil) and S (since) ([LPZ)).

We define the value of terms and state formulse at
& nomnegative real instant ¢ of a model o by evaluating
them pointwise, ie., using a(v;,t) wheaever the value of
v; is needed. For a state formala p, we denote by p(a,)
the value obtained by such pointwise evaluation at poiat
{. Then we define satisfability as follows:

(a,8) =9 iff é(a,t) =T where ¢ is a state

(0.‘)"“‘ " (‘a)“

(@,8) = (‘l Vés) if (a,t) =g, o0r (ors8) = @9

(a,8) b= oty & 3", <™ such that
3:."3.5?:“««-

. (0, o’ '

(a)0) = 659 i 3",0< " <, such that
s:;:)uyg:"‘tc'.<t
(a,F) o’ ’

Note that differently from the integer-based TL, the
mew¢hnﬁau¢lamala
empty p interval. We may also define some derived oper-
ators:

PAY=~(pVY) p—y=(~pvy)

p=Tlp p = TSp
Byp=-@P-p, Elp = ~©-p
pUty = pAply

The derived temporal operators ¢, B have similar
raeaning to that of their integer-based counterparts, ex-
cept that in real temporal logic they are strict, meaning

175

that the preseat (point f) is not comsidered as a part of
the future.

Two additional logical operators that are needed are
guantification and fizpoint.

The semaantics of the existential quantifier is givea
by:

(a,8) = v.p iff there exists a model o’ differing
from a by at most the assignment givea
to v, such that (o', t) =

Note that we allow quantification over both global
and local variables, in contrast to [MP1] where quantifi-
cation is allowed only over global variables. When quan-
tifying over a local variable y, the requirement that a’ be
a model according to the definition given above implies
thas v satisfies the finite variability condition.

Universal quantification may be introduced as a de-
rived operation:

VYo.p = =~3v.(~p)

In order to define the fixpoint operator it helps to
slightly shift our view of the semantics of temporal for-
mulae and define for each formuls p and a non-pegative
real number ¢ > 0, their estent (validity-set) given by:

Ept)={a|(a0) = P}

This definition associates with each formula ¢ and
time instant ¢ > O, a set of all the possible models that
satisfy © at {. This leads to a view by which each formula
o defines a function E, from R* (the non-negative reaks)
to M, the set of all models (over V). Let D = [R+ — M|
denote the set of all functions from RY to M. It is not
difficult to see that it is a complete lattice, actually a
complete boolean algebra. The ordering oa D is closely
connected to implication between formulas. Thus ¢ C ¢
{when interpreted as elements of D) iff ¢ — ¢ is valid.
Consequently the minimal element of D is F = At.¢ and
the maximal element of D is T = AL M.

The logical operators may now be viewed as functions
from D to D. Thas for ever two elements ¢;,¢3 € D, we
may express the operators of disjunction and unéd by:

ava=cuUe=Alf{a|ace(l) or
a € eg(t)}
erlles = M.{a| 3t"[t < t",a € e5(¢”) and
vt <t <t a€et)))

We can show that all the operators defined above
excluding ~ are continuous, while - is amti-continuouns
over D. Consequently, we consider equations of the form:

X = p(X)

where X is a local proposition variable, and p is a tempo-
ral formula in which all instances of X are positive, i.e.,

hadadiasididiAade Sad et a2 Roi fah So> Sac g 4 UL Y
£y

R PN AN N NN T

re—r————

)

oy

encompassed by an ¢ses number of negations. In such &
case this equation is known to have both a minimal and &
mesimal solution. We deaote them respectively by uX.p
and ¥X.o. The usual property of exiremal fixpoints be-
ing obtained by limits of Snite approximations, caa be
expressed in our case-by:

wxpz \f ¢(F)

vXe= R ¢ (T)
i=0

where for ¢ = p(X) we define p°(X) = X and
pHX) = p(p'(X)).
As a simple example coasider the equation

Xa29(pAX)

Its maximal fixpoint can be obtained by approxima-
tions. Denoting p(X) = 9 (p A X), we can show that
#'(T) bolds at ¢ iff there are i distinct time instants
t<) <...<{tsuchthat pholds at each of the ¢y,..., 4.
Consequently ¥X.© holds at ¢ iff there are infinitely many
points ahead of £ at which p is true. In real temporal logic
this leads so:

rXO(pAX)a(BOpvO(pT))

On the other haad, the minimal Bxpoint of this equa-
tion is F. This is due to the fact that F satisfies the
equation aad is also the minimal element of D. We thus
have:

uX.®(pAX) s F

Asn importaat observation is that all the operators
introduced respect the dinite varivbility restriction. This
means that the faite variability restrictioa holds not only
for the propositions and variables, but also for any tem-
poral formula defized over them.

Axiomatic Characterisation of the Real Tempo-
ral Logic

Whenever a logic is introduced aad recommended 28
a tool for formal reasoning about programs, an essential
part of this recommendation should be a deductive sys-
tem that supports sound reasoning within the logic iteelf.
Since the full logic is clearly not finitely axiomatizable, we
will int~oduce the deductive system we propose in steps,
indicating the step at which we lose completeness and de-
cidability.

The Propositional Fragment

The propositional fragment is obtained by requirisg
that all the variables in V' are propositions, ie., range

RO AN A

v

- Lath s Jon w A s

over {F,T}. In this case globel quantification can be elim-
inated. This is because for a global proposition u:

Ju.p(v) = @(T) v o(F).

Cougider first the language without (local) quantifi-
cation or fixpoint operators. We propose the following
axiomatization:

FO. All sabstitution instances of propositional tautolo-
gies.

FL B (p— ¢) — ([olio — vli6] A l0lp ~ ol ¥]}

F2. pAdly —olilyA6Se]

FS. oly =[pAply)iy

Fo ol = olllp A pliv]

FS. (plv)A-~(0liv) — (p A ~0)liy

F&. plyadlp—(pAd)li(vAs) v (pAO)i(¥A0)

vV (pAd)(pAp)

Six additional axioms P1-P@¢ are obtained as the mir-
ror images of F1-F6, that is, by interchanging in each
sxiom B with B and U with S.

Axioms F1 and P1 state that the J and $ operators
are monotoaic in both arguments.

Axioms F2 and P2 specify the relation of reflection
bolding between past and future. Axioms F'S, F4 and their
past counterparts characterive the time structure as being
dense, i.e., between every two instants there exists an ad-
ditional instant distinct from both. To see this, consider
a simpler version @ p — @ @ p which also character
izes density. It certainly does not hold in integer-based
TL, when we interpret @ o a3 OO ¢. Axioms F6 and
PG state that the tine structure is linesr. Essentially it
says that if both ¢ and p are bound to happen, then they
will eitker bappen simultaneously or one will precede the
other.

F1. Be—-@p
P7. BfFve ar

Axiom F7 states that the future is anbounded while
P7 asymmetrically states that the past does have a defl-
nite starting point.

the proposed system includes the following inference
rules:

Ri. Modus Pouens: F p, I (0o = ¢) = | ¢.
R2. Generalisation: Fp = + Hp, F Bp.

the system consisting of axioms FO-F7, P1-P7 and
rules R1, R2 is taken almost verbatim from [Bu], where
it is stated that it forms a sound and complete axiomatic
system for the comsidered fragment of propositional TL
over the rational balf line Q* = {r€ Q| r 2 0}.

In order to characterize the real half line R* we usu-
ally add a completeness axiom. This axdom states that
any (Dedekind) cut defined by a change of a proposition,
say from T to F, identifies an instant belonging to the

176

(o

A gh eq B, 2T

> = oM
R i " -
Wi%mm;'{w:mﬁm-}:m{&j

N - N

Ty Puf bl

=~

stracture which marks the transitioa point. In our case,
the requirement of flnite variability already ensures that
any change in value of a variable y must be associated
with some aode ¢; that marks the transition point. Coan-
sequently completeness is superceded by the finite vari-
ability requirement represented by the axioms:

F8. pUTv (~p)UT

P8. (©T)— STV (-p)ST

These axioms state that for every formula ¢ and in-
stant { > O, there is always an open interval to the right
oft ({¢]t <t <"} for some 4", I < t") in which the
value of © is uniform, and if ¢ > O, also an open interval
to the left of ¢ in which v is uniform.

A consequence of the fact that finite variability im-
plies completeness is that, relative to the language TLR,
the class of models based on the reals is equivalent to
the class of models based on the rationals. This means
that a TLR formula is satisfiable by a real model iff it
is satisfiable by a rational model. Consequently we may
interpret the R of TLR as staading for either the Reals
or the Rationals.

Consider mext the introduction of the fixpoint op-
erators to our system. Since the minimal and maximal
fixpoint operators are interdefinable, we choose as basic
the maximal fixpoint operator. It is controlled by the
folluwing axiom:

X1 vX.p(X) = p(vX.0(X))
i.e., the maximal solution to the equation X = p(X)
satisfies the equation.

A rule associated with the fixpoint operator is:

RS. FO—p(0) >Fo—vXep(X)

This rule states that »X.o(X) is the maximal solu-
tion to the equation X — p(X), and hence every other
solution, such as & above, is smaller than »X.p(X).

The minimal fixpoint caa be defined by:

BX.p(X) = vX.~p(~X)

The completeness of the system up to this point is
discussed in {LP).

The most complex operators in the language are the
quantifiers. Actually, the fixpoint operators can be de-

fined by meaas of quantifiers. Introducing the abbrevia-
tion:

Oe=Bpapa By
we can express ¥X.o(X) by the following formula:
3¢.l¢ A Oe(g) Avp. O(De(p) » Olp — q))]
where ¢(r) is given by r = p(r).
This formula explicitly states that ¢ holds now, ¢
satisies the equation ¢ at all points, and any other p sat-

isfyiug ¢ at all points is necessarily smaller or equal to
q.

171

The axioms controlling the quantifiers are similar to
those presented in [MP3}:
QFL 3pply] = pl(3p.¥)
where p is not free in ©.
The additional axiom QP1, is the past counterpart
of QF1.
Q2 Vp.o(p) ~ »(0)
where 8 is agy formula free for p in ©.
And we also bave the following rule:
R Fpop—¢ mlFp—Vpy
where p is not free in .
For the proper definitioa of the semantics of programs

we should be able to establish the existence of proposi-
tions that have an infinite variation.

For a formula ©, we define the following abbrevia-
tions:

Rise(p) = [(~@)STV (~p)] A lp v £UTT
Rise(ip)is true at ¢ 2 0 (ff ¢ is a transition point at which
¢ changes from F to T.

Fall(p) = Rise(~p).
Ch(p) = Rise(p)V Fall(p)
Thus Ch(yp) is true at ¢ 2 0 iff © changes its value at ¢.

Clock(g) = [EB Q¢ A Olg — (~g)UT)]

A proposition is called a clock if it is true at infinitely
many poiats, and whenever it is true it is immediately
false at a right neighboring interval. This implies that
¢ is true at countably many isolated points (mever at an
interval) and false elsewhere.

We add the following axiom:

C. 3¢.{Clock(g) A O(Cb(p) ~
(~Ch(y)} (g A ~Ch(¥)))}
This axiom states that for any formula o there exists
a clock ¢ that becomes true (ticks) at least once between
every two comsecutive changes in .

The questions of decidability and completeness of this
axiomatic system for the propositional fragment of TLR
will be discussed in [LP], hoping to establish positive an-
swers for both.

A trivial extension of the propositional fragment,
which is still decidable, is obtained by allowing a single
fixed data domain D of finite cardinality.

The General Logic

As soon as we allow data domains of unbounded car-
dinality, the logic becomes highly undecidable and not
fuitely axiomatizable. In that case-we have also to con-
sider yuantification over global variables. This quaatifi-
cutivn obeys axioms QF1, QP1, Q2 and rule R4 as well.

> 4
.

S W

=X

s

m & J‘EL % :ﬂ i g@

.I
o ‘.o'

Abmhphaﬂ.ddo&di!itdcpudoufya
global variablcs aad propositions. For globdal formulss ¢

G o= 0p

A Prognmmmguage and Its Operational
Semantics

We introduce a simple programming laaguage of pro-
cesses which commuuicate by shared varisbles. since we
wast to emphasise their continnous behavior rather thaa
the result they yield om termination, we will not allow
them to terminate.

Assuming that the syntax for terms and comditions
is understood, the following recursive definition describes
the syntax of processes:
1dle: rest is a process that performa a0 farther action.
Calk: call P represeat a recursive call to & process P

within its body.
Skip: If 7 is & process thes %0 is ohip; =
Assignment:

Uuh:MMoamudrim,
then y := ¢; 7 is a process that frst assigns e to
y and thea proceed to perform r.

Conditional:
If xy,... % are processes and ¢;,...,c, are con-
ditioas, thea {i]lc‘ — x;] is a process that nos-
deterministically chooses a direction § such that
¢; is true and then proceeds to perform =, for

some i, i=1,...,k

It #,, 73 are two processes and o3, 5% two dis-
joint sets of data variables, then

[own ¥%; 7, ||own yF; %] is & process that per
forms z; aad 75 im parallel. The own decls-
ratioas partition the available variables into two
sets amociating with each process the set of vari-
sbles it is allowed to modify.

Data Variables Declaration:
If 7 is a process then 30 is new ¥; 7, declaring
a set of new variables §j and thea proceeding to
perform =,

Process Declaration and Activation: If P is a process
variable aad B a process (body) then [P where P «= B) is
& process that begins to perform B and recursively reac-
tivate B whenever it meets a call to P. Note that our re-
cursive processes do not admit parameters, and also never
retura from a call.

A complete process will have the general form
own §; x, where the preceding ows declaration identifies

"c';’n'"z""' W ' SIS ‘
LRI ﬁaﬂ) 5!2"...»,.2\35" 15"35» I (5.; Dot Ne?'

- :

178

the variables, not locally declared in 7, which v may mod-
ity.

Given a complete process we define for each com-
stituent subprocess p, the set mod(p) which is the set
of variables that p actually modifies or deciares owning.

This is deflned by the following equations:
mod (rest)= ¢
mod (aell P) = mod(B) whea the oall P is
contained withia a P « B declaration.
mod (alip;r) =mod(r)
mod (y: -cl’) -md(r)u{v}

mod (|, Do =) = U mod(x)

mod(oui-t)smod(t)u{i}
mod (7 || 73) =mod(r;) U mod(ws)
mod (new §; 7) =mod(s) - {§}
mod (P where P « B) =mod(B)

These oquations are recursive, 20 we look for their
missmel solution.

We may asow define for each subprocess p the set
owns{p), which is the set of vaziables that the coatext ia
which p occurs has declared as owned by p. The compu-
tation of these sets proceeds ia a top-dowa fashion.

Bp=ship;zory = [y:=g1] thea
[oslr) mowas(s)
Bp=[0ei— m, thea
owas(x) =owns(p) foreach i = 1,... . k.
It p = [own §; 7, || own §*; my), thunnqnintm
owns(p) = §! U and define
owas(x)) =, foei=1,3
It p = new §; 7, thea
owns(x) =owns(s) U {§}.
It p = [P where P «= B), thea
owss(P) = owns(B) = owss(p) U
owns(callP)
wliren

This defnition is again recursive ans we look for the
minimal solutica.
A complete process ows 7; p is well formed it
a) No declaration of the form new J falls under the
scope of another declaratioa for some variable ia §.
Violations of this condition can always be corrected
by renaming.
bj Every csll P process occurs withia the body of a
declaration for P.
¢) Forevery subprocess xin p (mod (r)) C owne(r).
d) All the free variables in p are contained in 2.
We next define operational semantics for this lan-
guage. We assume that each subprocess withia the com-

plete process own T;p is uniquely identifiable. We deo-
fine a labelled traasition relatioa represeatiag the possible

MZ{M he““.“"@!n

N
2
b

[l sy

Rt v o g

R

e B
e

-

"

:

-~

+ o m gl gt gl Ok g g A
-

e

PP A

o

.

't
]

transformations that can be effected in one computation
step. Assume a set of states S, each of which is a mapping
from the currently declared variables to their values. A
configurelion is a pair <=x,0> consisting of a process r
sad astatec € S.
For x = [ok;'p 19l ot = own ¥ ;p),
<%,0> — <p,0>
Forz = [y:=¢; 4,
(]
<z,0> = <p,(0; y: 0(e))>
where (o;y:2(c)) denotes the state obtained from o by
assigning the value of ¢ evaluated at ¢ to y.

&
Forx = [iplc.' = pils
<z,0> I <pi, 0>
for each i = 1,...,k such that o(c;) = T.
Fort=[ne:: v; al
<z, 0> — <, (e;¥: 1)>
where ¢/ and 7 are obtained from p and § by systemat-
ically repaming all the variables in 7 that are in conflict
with the currently declared variables, i.e. the current do-
main of ¢. Again (o;§: 1) denotes the state obtained

from # by augmenting the domain of # by and assign-
ing to them the undefined value 1.

For x = |p; || pa], we have
<r,0>—=<p|l;, o>

for each transition <p;,0> 1\~ <p},0'>, and
<z, 0> —=<p ||y, >

for each transition <ps,0> 1\’ <py,0'>
For x = |P where P < B| ,
<r,0> - <B,o>
For = = csll P, appearing within the body B of a
declaration P e'B ,
<x,0> — <B,e>.

If <x,0> 'L <7,o'> for some ¥’,d’, then we say
that the label (process) A is ensbled in the configuration
<z, o>

An execution sequence corresponding to the inmitial
configuration <xy,0¢> is a labelled transition sequence:

A A
S:<xmg,00> —00 <%, 0> -l',...
such that:
a) Every transition appearing in § is justified by the

definition above.

The sequence § is mazimal, i.e., it is either infinite
or terminates in a configuration <w,ox> on which
no subprocess of x, is enabled.

b)

179

¢) The sequence § is weakly fair. This means that we

exclude infinite sequences in which for some A and

i 2 0, A is continuously enabled beyond <wx,,0,>

but never taken, i.e., A is enabled in each <xy,0;>,
J>i,butforall j>i, A, # A,

We define Sy, the set of T-states, as the set of all

states whose domain is 7. Let x = [own 7;p| be a com-

plete process, and sy € S3. A bekawiorof x on s is a
finite or infinite sequence of Z-states:

B:s0,9y,...

such that there exists an execution sequence:
A

A
$:<x9,00> = <XLOLD> —...
with xp = 7 and & = o, |y, ie., o; restricted to the
domain ¥, for each s =0, 1,....

This definition of behavior is still too detailed and
may contain redundant details such as stuttering. Conse-
quently, we define the notion of a redsced behavior which
eliminates stuttering altogether. A reduced behavior cor-
respoading to a complete process x and an initial state s,
is a finite or infinite sequence of z-states which is obtain-
able from a behavior of x on ¢¢ by deleting all consecutive
duplicates. Obviously such a deletion may transform infi-
nite behaviors into finite reduced behaviors. Let B(x,)
be the set of all reduced behaviors of » on #9. Then the
operational semantics we assign to a complete process r is
a mapping from initial states to reduced behaviors given
by:

Ofx]] = r0g.B(x,90)

This deflnition leads directly to a definition of an
induced observational congruence given by:

The processes 7 and p are operstionslly congruent,
7 ~ p iff for every context C(-)
(1) C(x) is a well formed complete process iff C(p) is.
(2) In the case that both C(x) and C(p) are well formed
complete processes, O[[C(=)]} = OfC(p)].
As an example of this congruence we observe that

(reat) ~ | OF — skip| ~ (P where P < P)

We may now reformulate the challenge we posed
in the introduction as: Find a compositional semantics
which is fully abstract relative to the operational con-
gruence defined above. We claim that the real temporal
semantics that we introduce in the next section answers
this challenge.

A Real Temporal Semantics

Let own Z; xy be a well formed somplete process. Let
us associate a temporal proposition variable X; with each

]]
B v‘:““.

RN
£

)

NI

peocess variable P;, i = 1,...k defiued in x9. Also assume
that we have computed for each subprocess p appearing in
%o, its ownership set owns(p) determined by its contexs.

In the section dealing with temporal logic, we have
defined the formuia Ch(yp) that marks the transition point
at which a formula © changes its truth value. We extend
this formala to mark & change in a data variable y by:

Ch(y) = Iu.Rise(y =)

This marks the point of achangefromy #£ utoy = u.
We also define the idiing formals for y:

y) = ~Ch(y).

The temporal semaatics of & process 7, denoted by [[x]),
is a temporal formuia that characterizes its behavior in
an abstract way. In the following definitions we use the
abbreviation s = s(owns(x)) to denote that all the vari-
ables owned by x are not presently changed. We provide
one clause of the definition for each type of subprocess:
o [resi| = 1A B

This implies that the main effect of the process rest is

to preserve forever the values of variables it owns.

L J [couP.]] = tu"'x‘
where X; is the proposition variable we have associated
with the process variable P;.

o kip:] = u* Gl
ofy= ed = .
s A 3u[li(s A (w =) Al {(y = u) A s(owns(x) - y)A
LAz

This formula identifies a first point in which ¢ is eval-
uated, aad then a second point at which y is assigned the
obtained value while all the other variables owned by »
are still preserved.

k
. ([jg‘c,—tpms

& &
sA {l BBaia A BO-e,] \ VIUIC,‘ A ij}
=1 j=1
This deflnition considers the possibility of deadlock
at 7 if each coadition is infinitely many times false. the
other possibility is the identification of a true c; followed
by the execution of p;.

o o1l 2]l = (] A [l

We consider the simplicity of this clause an important
feature that may well justify the complexity of the other
clauses.
o [new x4 =sn (/\ El(y))ASI(nﬂﬂ'p]])
yeowns(r)nT

The main effect of the declaration of new variables is
expressed by the existential quantification over the newly

introduced variables. A secondary effect is that all the
variables that # owns but have been covered or redeclaced

$
! ““'\.Q L8

}1;;‘,

180

in 7, i.e., variables in owas(r) N 7, will never be modified
again. This is because any reference made by o to one
of these variables is interpreted as addressing the newly
declared variable of that name.

o [P: where P, « B]] = 3q.0X[u*(Ch(g) A i [B])]

In principle, the natural definition we would expect
for process recursion is:

vX. (U *{B]).

However, as we explained in the introduction, if B con-
tains an ssgserded path, ie, a path with no change in
the values of variables, from P to csil P, the maximal
fixpoint of the naive equation will include undesirable be-
haviors. To ensure that all paths to X; in [[B]] will contain
a change, we impose aa external clock ¢ which is required
to change at least once on each recursion. By existentially
quantifying over it, we abstract away any particular fea-
tures that may be associated with a specific clock.

Because of space limitations we present the main the-
orem of this paper without a proof. A detailed proot will
be contained in a technical report presenting a fuller ver-
sion of the paper.

Theorem

The real temporal semautics presented in this section
is fully abstract with respect to the relation of operational
congruence.

TLR As a Working Tool

The complex formulae appearing in the definition of
the temporal semantics of processes may have created
the impression that TLR is a complicated formalism to
work with. This impression is unjustified, and the ap-
parent complexity should be attributed to the efforts of
constructing a compositional semaatics of concurrent pro-
cesses, In fact, for actual reasoning about programs, TLR
is quite comparable to integer-based temporal logic, and
the added feature of full abstractness makes it an attrac-
tive alternative.

Consider for example the following process:

7: own z; P where P <= [2:= 2+ L; P|

An obvious property of this process is expressed by
the formula (z > 0) — H(z 2 0). Let o denote z > 0.
In the integer-based TL we establish the conditional in-
variance of i, i.e., that once it holds it is preserved for-
ever, by showing that all the atomic actions of x preserve
. Here we do something similar. First, we observe that
after some simplifications ([x]] = © where

0: vX.|(z=w)Ut(z=uw+1)U*|(z=u+1)AX]

We have climinated in this expression the external clock
g, since the process itself guarantees a change on each

‘.;_.“ u._‘,_‘ 7. ? . - “ . . L.
s L A D L A e S A e

-

i ""“‘“""mm'wm“mmm

- w
EASY,

L

L

- SOOI

>

AQ‘L

e

3
3

iteration. This elimination can be formally justified. Ob-

viously © satisfles its equation:

1. O=3sl(z=wlt(a=u+1)U*|(z=u+1)A0)]
From which it is not difficult to establish:

2. OAp— {pU*[Ch(z) ApUt(O A)]}
This can be interpreted as showing that © A sat-
isfles the equation

Y — plU*(Ch(z) A pU*Y]

Consequently, using rule RS and the existential ver-
sion of R4 we obtain

3. OAp—2uY[pUt|Ch(z) A plU*Y]|
An important theorem of TLR is:

4 {FaaY[pUt(Ch(z)ApUtY]}=(pA By)
We thus obtain

5. Oap— By
Or equivalently

6 [J—[e— By
Using the notation of [BKP1| this is representable
as

1 (r{e — Be)
which means that all executions of r satisfy the tem-
poral property p — B .

Since the only step in this proof that depends on the
specific ¥ and o considered, was the derivation of 2 from
1, we can condense all the others into a derived proof
principle.

Let x be a process of the form:

7: owny; Pwhere P<=B

Denote by [B](X) the temporal semantics of B, where
depeudence on the propositional variable X bas been
made explicit. Then we bave the following rule:

e =[B](6) F ©Ap — {pU*[Ch(g) A pU*(8 A)i}
[zl{e — B}

A slightly more general rule is needed for the case that B
is not guarded.

Inspecting the passage from 1 to 2 above, we see that
what is needed is establishing that o is preserved along
agy computation path in B leading to any call P appear-
ing within B. We also observe that it is very similar to
the rule PROC bandling recursion in [BKP1].

It is clear that many more derived rules of this kind
should be developed before we can use TLR with the same
ease and convenience now attained in the integer-based
TL. However, we do feel conlident that such high-level
rules can and will be developed.

An Example of Specification and Verification

For a more comprehensive example we consider Pe-
tersoa algorithm for mutual exclusion ({Pe]).

In a slightly extended version of our programming
language, the algoritbm can be presented as:

P: own y,p,f,in,,ing;
(5.8, t,iny,ing) := (F,F,F,F,F); o || m]
where
p1: own yy,iny, | ¢ ; [P, where P, <= By
pa: own yy,ing, 1 ¢ ; [Py where Py < By
B,: [([1]'—‘ call P,)
(T = =T, t:=F;
(@1 where @, <= Cy])]
Bui((T ~ cal Py
(T = :=T;1:=T;
[Q2 where Q3 < Cyl)]
CI:I(B, A=t — call Q)
(~ppvt — ény :=T; iny, :=F;
wn:=F; call P)]
Cail(lv]n A=t — call Qs)

(~1vV-t = ing =T ; ing :=F;
¥ :=F ; call Py))

The extension we introduced to our programming
language is that both p; and py are allowed to modify
t, but each in its own way. The notation | { means that
and its subprocesses are oply allowed to set ¢ to F,
while py is only allowed to set t to T'.

As a result the s formula for p, and py should read
respectively:

n= "Ch(yl) A "Ch(l"l‘) A= Fall (‘)
33 = ~Ch(gy) A ~Ch(ing) A ~ Riee (t)
Writing the semantics of the two processes, it is pos-

sible to infer from them the following modular specifica-
tions:

[pal{ Oliny — 1) A Ofiny A By — 1)}
[psl{ Oling — ©3) A D(ing A O — 1)}

where 8, and O, characterize the history of a point in
which p; and py are ready to enter their critical section
(signified by setting s»; and ing to T).

-—

O1:n A UIS('!‘ Awn)
O3:1n AnS(tAYs)

181
ol M R O S S AR L R OSSO
> » N ” BRI S N R R
e N R B S

o

g

e~
Y

A

[. e,
“' L]

R

It is easy to see that when we combine these specifi-
cations we can obtain (by contradiction):

(o1 [23] { O~ (iny Aing)}
which establishes mutual exclusion.

e
Conclusions

The real-numbers based model and its associated real
temporal logic, seem to achieve a higher degree of ab-
stractness than the one provided by the integers-based
model. The price does not appear to be exceasive since
the basic structure of temporal formulae, specifications
and proofs is not significantly altered. The gain is ob-
vious since it provides a much cleaner and more natural
semantics. This becomes even more apparent when illus-
trated on a communication based process language such
as CCS. It can be shown that the real temporal seman-
tics of CCS attains the same standard of abstractness set
up in the algebraic treatment of CCS and its derivatives

(IM2], [HM], [dNH]).
Acknowledgements

We would like to gratefully acknowledge the sup-
port given by the Weizmann Institute to the visit of the
firs¢ two authors. Many thanks are due to L. Lamport,
M. Chandi and J. Misra for most illuminating discussions,
to A. Emerson and L. Zuck for friendly help and advice,
to the participants of E.W. Dijkstra’s Tuesday afternoon
club for many helpful comments, and last but not least to
C. Weintraub for her most speedy and eficient typing.

References

|BKP1] Barringer, H., Kuiper, R., Poueli, A. — Now
You May Compose Temporal Logic Specifica-
tions, 16th STOC (1984) 51-63.

Barringer, H., Kuiper, R., Pnueli, A. — A
Compositional Temporal Approach to s CSP-
like Language, Proc. of IFIP Conference: The
Role of Abstract Models in Information Pro-
cessing, Vienna (1985).

de Bakker, J.W., Meyer, J.-J.Ch., Olderog,
E.-R. — Infinite Streams and Finite Obser-
vations in the Semantics of Uniform Concur-
rency, 12th ICALP (1985) 149-157.

[Br] Brookes, S.D. — A Semantics and Proof Sys-
tem for Communicating Processes, 2nd Work-
shop on Logics of Programs, LNCS 164 (1983)
68-86.

[BKP2|

[4BMO)

{Buj Burgess, J.P. — Basic Tease Logic, in D. Gab-
bay and F. Guenthner (eds.) Handbook of
Philosophical Logic, Vol I, D. Reidel Publish-
ers (1984) 89-133.

|CE} Clarke, E.M., Emerson, E.A. — Design and

Syunthesis of Synchronization Skeletons Using

182

i g
R Y U U T vy

[CM]

[HO]

HP|

I

[Lay

[La2]

ILP)

[LrZ]

M1

2]
iMP1]

[MP2]

IMP3j

e i i Al Sl A d o g o o o

Braaching Time Temporal Logic, 1st Work-
shop ou Logic of Programs, LNCS 131 (198])
52-71.

Clarke, E.M., Mishra, B. — Automatic Veri-
cation of Asynchronous Circuits, 2ud Work-
shop oa Logics of Programs, LNCS 164 (1988)
101-115.

Hennesy, M.C.B., Milner, R. — Algebraic laws

for Nondeterminism and Comncurrency, JACM

32, 1 (1985) 137-161.

Hailpern, B., Owicki, S. — Modular Verifica-
tion of Computer Communication Protocols,
IEEE Trens. on Commenicetions, COM-31,
1 (1983) 56-68.

Hennesy, M.C.B., Plotkin, G.D. — Full Ab-
straction for a Simple Parallel Program-
ming Langusge, Mathematical Foundations of
Computer Science, LNCS, 74, Springer Verlag
(1979) 108-120.

Jones, C.B. — Software Development: A Rig-
orous Approach, Prentice Hall International
Series in Computer Science.

Lamport, L. — What Good is Temporal
Logic?, Proc. IFIP Congress, Paris (1983)
657-668.

Lamport, L. — Specifying Concurrent Pro-
gram Modules, ACM TOPLAS 5, 3 (1988)
190-222.

Lichtenstein, O., Pnueli, A. — A Deductive
System for the Temporal Logic of the Reals,
Technical Report, Weizmann Institute of Sci-
ence, in preparation.

Lichtenstein, O., Pnueli, A., Zuck, L. — The
Glory of the Past, Logics of Programs, LNCS,
198, Springer Verlag (1985) 196-218.

Milaer, R. — Fully Abstract Models of
Typed y-Calculi, Theoretic Computer Science
(1977).

Miluer, R. — A Calculus of Communicating
Systems, LNCS 92 (1980).

Mauopa, Z., Pnueli, A. — Verification of Con-
current Programs: The Temporal Framework,
in Correctness Problem in Computer Science,
R.S. Boyer, J.S. Moore (eds.) Academic Press
(1982) 215-273.

Maana, Z., Paueli, A. — How to Cook a Tem-
poral Proof System for Your Pet Language,
10th POPL (1983) 141-154.

Maana, 2., Poueli, A. — Verification of Con-
current Programs: A Temporal Proof Sys-
tem, Foundations of Computer Science IV,
Distributed Systems, Mathematicsl Ceatre
Tracts, 169, Amsterdam (1983) 163-255.

_\‘

o (?5‘:.‘1_ FON .r_\.-'?)-f‘ :‘ o~ ‘f\-Tm‘?'i".\'

TTWTYTWIrRY™

’ o ..

:1»%::-,:.:,3&

R M M e s e o
[PTTro - < oaaemtrees 2y ~ 4 g gy L o G ‘o o dade 3 S PR - i % e o X

iy [dNEH] de Nicols, R., Hennesy, M.C.B. — Testing
g Equivalence for Processes, 10th ICALP, LNCS

N 184 (1083).

[NGO] Nguyen, V., Gries, D., Owicki, S. — A Model
‘ and Temporal Proof System for Networks of
Processes, 12th POPL (1085).

) oL} Owicki, S., Lamport, L. — Proving Liveness
:_»_, Properties of Comcurreat Programs, ACM
b TOPLAS 4, 8 (1962) 455-495.

‘ [Pej Petersoa G.L. — Myths about the Mutual Ex-
| clusion Problem, Information Proceseing Let-
ﬁ fers 12,3(1981) 115-116.
[
[Pa1) Poueli, A. — The Temporal Semaatics of Con-
.. current Programs, Thesretical Computer Sci-
o ence 13 (1961) 45-60.
\n [Pa2] Paueli, A. — Ia Transition from Global to
Modular Temporal Reasoning About Pro-
= grams, Proc of NATO School on Logic
o aad Models for Verification and Specification
) of Coacurrent Systems, La Colle-Sur-Loup
. (1964).

& [sMs]) Schwartz, R.L., Melliar-Smith, PM. — Tem-
poral Logic Specifications of Distributed Sys-
tems, 2nd International Conference on Dis-

g . tributed Computing Systems, Paris (1081).

3

E ot o

PR

e\ |

“ N
“

b

<.

n" <

:" - - .'"'.

i <.

3Y

. “!

¢

™

&

* v

o

-

L4

.

183 "

L4

)

AR LES LA CATL TR TR A FL TR PR T I N WL A S ~_.‘-_:

i (3 E FOT R A A
Y \ \' b3dy CLaton

AN Y

e a - daaao i x g s sl rog i booond ande xo ek eh <abiafer el Abc SincAlachie Ate fus A3 A o0 BN ’J"'..".T

- Systolic Algorithms as Programs

K. Mani Chandy
J. Misra

Department of Computer Sciences
University of Texas
Austin, Texas 78712

s m
§ :‘- 20 December 1985

+a S

Lo - 9
e .
AL [SR

..
-
L

. Abstract

f;’, - We represent a systolic algorithm by a program consisting of one multiple assignment

A statement that captures its operation and data flow. We use invariants to develop such

programs systematically. We present two examples, matrix multiplication and LU-
! decomposition of a matrix.

)

¥

&: X

N

SR

U

)

W1 -,

W
.‘2 This work was supported in part by a grant from the Office of Naval Research under

grant N0O014-85-K-0057.
o
I

LN
|

¥

4

ot
o
gy gut o

bt

UL RRAY """"";‘ o, " 119Ny "y “a® ""\)‘.\ WP O T LRI TS AR AN AR RN T % ¥) Ay $\'[."‘»“ KN "Ny \‘.1
{ § ‘ /3. 't‘ "&" """‘f "“-(“’.“I *{“ 'N\ N ‘ .' ‘ ‘ 1!' “ 3 b N RA N kg 2 ‘.0‘ |‘- ‘l 1’ - < W& " L

AL a0 M ol

LA

Table of Contents

1. Introduction 1

i 2. Programs and Systolic Algorithms 1

) 2.1. Programs 1

2.2. Systolic Algorithms 2

1 2.3. Representing Systolic Algorithms by Programs 2

N 2.4. Program Development 4

2.5. Notation 4

' 3. Band Matrix Multiplication 5

> 3.1. Initial Conditions 6

» 3.2. Preserving the Invariant 7

& 3.3. Determining Array Size and Number of Steps 8

: 4. L-U Decomposition of a Band Matrix 9

I& 4.1. Initial Conditions 11

N 4.2. Preserving the Invariant 11

4.2.1. Preserving the first condition in the invariant 11

ﬁ 4.2.2. Preserving the second condition in the invariant 13

' 4.2.3. Preserving the third condition in the invariant 13

5. Discussion 14

5 8. References 15
_,:\
S
\
)
-
P

C SOt R P P T R R A O R B AT

ii

ey

List of Figures
Figure 2-1: Shift Register 3
Figure 3-1: Relevant portion of a systolic array for multiplications of band 10
matrices with BA= —3,TA=2,BB= —1,TB=1

R

77Aa

.

~
™z

1. Introduction

Systolic algorithms [1] are synchronous, parallel programs executing on a number
of nodes (machines) interconnected by a set of lines. Systolic algorithms are often
described by pictures of nodes and lines and descriptions of processing at each node in
the picture and data movement between nodes. A pictorial representation of an algo-
rithm suggests that it can be implemented on a VLSI chip; however, pictures do not
lend themselves readily to proofs. of correctness.

5 WE 2%

We view systolic algorithms as programs and apply traditional program develop-
ment techniques, based on invariants, in their design. In this paper we carry out the
development of algorithms for matrix multiplication of band matrices and L-U decom-
i position of a band matrices. Both algorithms are from Kung and Leiserson [1].

2

A g
S
-

'~

We are far from proposing a VLSI design methodology: We do not consider many
of the limitations in a physical realization; these are concerns for a later stage in the
design. However, our use of traditional program development techniques seems to yield
designs for which data flow rates, initial and boundary conditions-- the tedious details--
are derived mechanically.

A great deal of work has been done on systematic methods for developing systolic
algorithms [5,6,7,8]. These methods are largely based on transforming sets of equations
into forms suitable for implementation on systolic hardware. The primary contribution
of this paper is to represent systolic algorithms by programs derived from invariants.
Each program consists of one multiple assignment statement. Our goal is to apply
traditional programming techniques in developing systolic algorithms.

w: =L

L
PR
SHLAE

2. Programs and Systolic Algorithms

2.1. Programs
Our programs have multiple assignment statements. A multiple assignment
statement of the form,

z,y:= f(z,9), 9(z,)

- assigns f(z’,y’) and g(z',y') to z, y respectively where z/, y' are the values of z,y prior
to the execution of the statement. We allow the right sides of assignments to be con-
ditional expressions. For instance, we represent

- {0, ifa>0

z = —

ﬁ 1, ifa<o0

7

&

kY 3y L o 1%,) » " "% - 22@ "Ci‘t'-\ F AR
h‘ h‘ h ,";,‘!"»lo',‘ 9‘6‘4 y\ ‘1 ‘,‘ ",,jf.‘; :A‘h “ o 1.?’ tﬁ.a’? A8 .“ 1‘ ‘g" |‘t‘i‘l‘; o... ’0. ' ‘ 'l .’l“" |'| . ‘ \ % \MM} “ M‘i

oA L i h ace b g e oo mbi el alh ais aul avg aiis-ngh mia afh il ali-atd wiir-pkac ek avd ol oS il o o B

z:=0ifa>0~1ifa <0

. A program consists of declarations of its variables and their initial values and one
{y multiple assignment statement. The program execution consists of executing this state-
ment repeatedly forever. Non-terminating execution is convenient for reasoning;
however, the program may be stopped when the left and right sides of the statement
ﬁ are equal in value, because no further change in variable values is then possible.
Restricting a program to one multiple assignment may seem too restrictive. However,
our experience suggests that such programs are adequate for representing systolic al-
% gorithms. A multiple assignment can be thought of as a synchronous computation —
computing all expressions on the right side synchronously -- and hence, captures the es-
@ sence of systolic computations. Elsewhere [2,3,4] , we have shown that a set of multiple
assignment statements executed in a non-deterministic fashion represents different kinds
of parallel and distributed computations; for this paper, we do not require this

ﬁ generality.

‘ f‘ 2.2. Systolic Algorithms
X A systolic algorithm is executed on a collection of nodes, and directed lines con-
4 necting pairs of nodes. A step of the computation consists of some nodes (1) reading
ﬁ values from (some or all of) their input lines, (2) computing and (3) writing values to
(some or all of) their output lines. A value written to a line is available at the next step
at the node to which the line is directed. We may represent local data at a node by
placing the data on lines directed from the node to itself.

I

Systolic algorithms display regular structures: there are only a few kinds of nodes,
and interconnections among nodes are regular. Furthermore, in many cases, systolic
hardware operates in a pipelined fashion.

|

AR

k3

e

2.3. Representing Systolic Algorithms by Programs

We represent each line in a systolic circuit by a variable; a variable value at any
point in the computation is the value on the corresponding line. Each node in a systolic
circuit is represented by an assignment (in the multiple assignment statement). A
synchronous step in the systolic algorithm is simulated by executing a multiple assign-
ment statement: it assigns new values to certain variables based on current values of
some variables. A small example is given below.

... ,.
A
o SR
[

Example: (Shift Register)

A systolic algorithm for a shift register with /N nodes is shown pictorially in figure
2-1. Every node transmits the value from its input line to its output line™ili every step.
Lines are numbered as shown in the picture.

.'—.;

T W WL WL oWy

o

—
R
,‘4'

—)!).-_4 -—- _4 LS
iy 0 1 i i+l ‘ | N

Iii

N Figure 2-1: Shift Register ;i

Let z[i] be the variable associated with the i*® line. The multiple assignment
& statement which represents the operation of this algorithm is, (informally)

B for all 7 in 0 to N — 1:: {assign in parallel}
s z[t + 1) := z[¢].

We will write this as (in a notation to be introduced later):

L ({in O.N—1:
1 i + 1] s a2l

Note that there is no explicit mention in the program about data movement. Data
items move within the array by being assigned to different array elements, but our
v treatment does not trace the movement of individual data items.

y A multiple assignment statement may represent an algorithm having no systolic
realization. For instance, a line value is read by exactly one node in a systolic algorithm
but a variable may appear in the right hand side of more than one assignment in our
program. Similarly, computation at a node usually depends only on a few input line
values due to physical constraints, but our programs allow expressions on the right hand
side to have arbitrary numbers of variables. We constrain our programs to mirror these
W limitations of systolic hardware.

Limited fan-in, fan-out: Each expression on the right hand side of an assignment
has a bounded number of variables. This bound is the maximum fan-in. Each variable
appears at most once on the left hand side of an assignment and at most once on the
right hand side of an assignment; this is because each line is directed from_one node on
the external environment to one node on the external environment.

-
X

- - -
-'0'"’;"!&;"

CTEITC AT A AT A BRI 8 0 AT AT I NS SR o) J AN P GON
f “‘4"'*5;‘,’ - Aﬁ g <P {_’,'«2-1*.{*,‘."5‘\3" AN i},;?':@:fp 4 D"_',‘;!“i':"! ’;J.\\l"‘. A S LI ,'I',:_‘,")'x‘l'.‘i‘,bﬁ',‘t’q*l‘.'-&ﬁ}e R 'l.& ,‘;‘"‘Pil‘u“'é_i

k) e

L)

;§; & Systolic algorithms typically operate on arrays of data items. Systolic algorithms
‘ require that the speed at which data moves through the circuit be independent of the
5 I index of the data items (usually). Hence, we propose:

-

e .

ok
—
> ..;

Linearity: The step number at which a computation is done is usually a simple
(e.g., linear or piecewise-linear) function of data indices.

I

We have shown the correspondence between systolic algorithms and a special kind
of program. Henceforth, we deal only with issues of developing such a program from a
specification.

== =R

2.4. Program Development
As in other areas of programming, an tnvartant is a central concept in our ap-

,,.
T

I proach to systolic algorithms. In fact, it seems that the program design task is almost
| over once a suitable invariant is found. We introduce a variable ¢, denoting the step
5 number (¢ is initially O and is increased by 1 in each execution of the statement) and
state an invariant relating various data items and ¢t. We will be guided by the limited
fan-in-fan-out and linearity requirements in postulating an invariant. The _-ffect of
;‘ il“‘\ statement execution is to preserve the invariant when ¢ is increased by 1.

The invariant is useful in deriving initial conditions and boundary conditions.
Determining these conditions and the rate of data flow are the most tedious details one
has to contend with; invariants seem to simplify the effort.

2.5. Notation
We use || to break up a multiple assignment statement into its component assign-
ments for convenience in reading. For instance,

s e
et

L,y =y2r

is equivalent to

S &2 Tl

ri=y|y:==zx

-~ . S

-,,
==

The following notation, where S is a set and each Q(z) is an assignment (or mul-
tiple assignment):

(¢in S || Q(s))

T

b N

BRSNS L B

denotes a statement obtained by enumerating, for every element of §, Q(t) with ¢
replaced by that element. For example (¢ in 0..1 : || X[¢]:=7Y][s]) is equivalent to
|| X0} :=Y10] || X[1] :=Y[1]. We omit S when it is clear from the context. The state-
ment,

|

ADCE U OO LA A3 O KA AR R AR X > P NAX OOJON ONOOD O O RGNS !
X e o s A L N N RO e R D R X e O N X R N R e R A AT

z:i=cif b
is to be interpreted as

z:=c¢eif b~ zif -b.

The scope of 1f will be shown explicitly, if needed, as in the following.
z, Y= (el, c2) if b

is equivalent to,
T, y:=e¢, if b, ey if b

and also equivalent to,

(zyy:= €y ‘2) if b

AR

3. Band Matrix Multiplication
The problem is to compute

==

C=AB

where A, B are band matrices and "-" denotes multiplication.
We have,
Clik] =) Ali,g] X Bljik]
J

This expression cannot be used directly for computing C[¢,k] since that would vio-
late the limited fan-in-fan-out requirement. Therefore, we define as in [1]:

0, ifj<O

Clli k ={ .
k] C71 [i,k] + Ali,g) X Bljk],if5>0

(1)

P &

Equation (1) suggests that A[,j] and B{jk] will be multiplied in some step. Using the
linearity criterion, we may postulate that they will be multiplied in a step which is a
linear function of #,5,k. If this linear function is independent of one of Tt8 arguments,
say 1, then for any fixed value of j,k, A[f,j] and B[j,k], will be multiplied in the same

s K

b Ciak san e e sbho ARt st Rl ac EA- el oSk -a e ot o allh ath- oA ot s~ ali ik fhcaci otk alh-ath sif All MR SR oSG RLe Gtd i

step for all 1; that is B[j,k] will appear in more than one computation in a step, thus
violating the limited fan-in-fan-out requirement. Hence, we may assume that A[s,j],
B[j,k] are multiplied in a step that is a pontrivial linear function of each of its ar-
guments - we choose the simplest such function: ¢+ j+ k.

" = X

Since A,B are band matrices, we postulate that each diagonal (main, subdiagonal
or superdiagonal) is pipelined. Let one node be assigned for each pair of diagonals - one
from A and one from B - to carry out computations on element pairs from these
diagonals. Element Alf,j] belongs to diagonal (i — j) of A and B[j,k] to diagonal (7 — k)
of B; hence index the node at which they are multiplied by (¢ — j, — k).

P &8 A 4

Equation (1) suggests that A[i,5], B[s,k], C*~! [,k] be made available at the same
time at some node and, from this discussion, that node is (¢ — j, — k). Therefore, each
node (v,w) has three input lines X[v,w], Y{v,w] and Z[v,w], along which A,B,C respec-
tively are pumped into it. From this discussion, we have the following invariant.

Invariant : t=1+j5+k =

B &8 5K .

Xl =7, 5— k] = A[i,5] and,
Y[i — j, j— k| = B[j,k] and,
Zli—j, 57—k =C""1[i K.

The variables #,5,k,t in the invariant are universally quantified over all integers; ignore
the equations corresponding to undefined subsecript values in the right side.

== W

Our design task is nearly complete! We merely have to show how to establish the
invariant initially, and how to preserve it when ¢ is increased by 1.

3.1. Initial Conditions

%:_E Initially, let ¢ be 0. Then for any 4,5 with k= —(¢ + j), we are required to have,
= X[i — 4, £ + 2] = Als,g).

e

o Similarly,

!

Y] - 25—k, j— k] = Bj.].

Let j= — (¢ + k), where ¢+ > 0,k > 0. Then, j < 0. Hence,

Ci~ ik =o. —

Substituting — (¢ 4+ k) for 5 in the invariant,)

’
g
: .
N

NN
e g byl
:4“1,"..! ¥

g/

Z[2i+k, —i—2k=0.

Summarizing the initial conditions,

X[¢ — 3, ¢ + 23] = A[4,j), for all 1,5

Y[- 25—k, j— k] = B[j,k], for all 5,k
Z[2i+k, —1—2k]=0,fori >0,k >0.
t=0

3.2. Preserving the Invariant
We show how to preserve the invariant when ¢ is increased by 1. First, we
simplify the notation by introducing,

v=t1—jand w=j5—k.

First consider the data item A[f,j. From the invariant, it equals X[v,w] at
t=1i{+j+k. It must equal X[v, w— 1] after ¢ is increased by 1. This can be ac-
complished by the assignment, ‘

Xy, w = 1] := X[v,w).

Similarly, we get the assignments,

Yjv+ 1,w]:=Y[v,w] and,
Zlv - 1,w + 1] := Z[v,w] + X[v,w] X Y[v,w].

Note that these steps need be carried out only for t,:,5,k satisfying t =1+ 7+ &, i.e.,
t=(—j)—(F—k)+35. We rewrite this condition - weakening it somewhat, to
eliminate 7,5,k - as t = (v — w) mod 3. This results in the following program.

P A e

&

-
hd

o

S

Program P1 {for multiplying band matrices}

initially :

(for all1,5:: X[¢ — 7, ¢ + 2] = Alt,j])
(for all jyk:: Y[— 25—k, j— k] = Bljk])
(for alldi,k:: Z[2i + k,—1—2k] = 0)
assign: (for all v, w::

(N Xpw-1] = Xlvu]

I Yv+1lw :
| Z[v-1,w+1] :

I t

Y{v,uj
Z[v,w] + X[v,w] X Y{v,w])
if t=(v—w) mod 3)

t+1

end {P1}

This program represents a systolic array. We have finished a large part of the
design. What remains to be done is to determine the size of the systolic array and the
number of steps required to complete execution.

3.3. Determining Array Size and Number of Steps

Program P1 does not specify the dimensions of X,Y,Z nor the step number ¢, up
to which program execution should continue. These parameters, and others, can be
deduced from the invariant using the sizes of input matrices A,B as parameters.

Let BA,TA (bottom of A, top of A) have the following meaning: A[t,j] is zero un-
less BA<1—j5<TA. Likewise, define BB,TB for matrix B. The multiplication in
program P1 yields a zero if X[v,w] =0 or Y{v,w] =0. Therefore, we may restrict v,w to
the range BA < v < TA and BB < w < TB for computation of the product. Hence, Z
can be dimensioned (BA—1 .. TA, BB .. TB+1). Other assignments merely move
the elements of A or B; this corresponds to feeding the systolic array appropriate ele-
ments of A and B.

Next, we determine when and where C|[¢,k], for any given 1,k, becomes available.
That is, we want to find T and v,w such that,

(t=T) = (Zlvu]=Clik)).

- First we determine 7 such that:

Cli k] = €7~ 1[i k] - (2)

i

P

,,b,w,
44

- W

A

e W &5

R

AR

-
¥
-

S

”";‘g“n“ﬂ

TETRY TR,

T RTE TR T TS e e e

This holds when A[s,5] =0 or B[j,k] =0. (A[i,J] =0 and B[j,k] =0 if j exceeds the
number of columns of A. To eliminate special case analysis , we assume that A,B are
augmented with suitable number of zeros for larger values of j.)

Ali,g] =0,forj > 0,if i — 7 < BA,

Blj,k] =0, for j > 0,if j— k > TB.

Hence the minimum value of j for which (2) holds is 5 * given by

J*=min(i —BA, k+TB) + 1

From the invariant, at T=1+ 7* + k,

Zli - 5%, §* — H = Cli.A.

Note that in case — BA=1TB, j* = min(i,k) + TB + 1. Hence the systolic array has a
pleasing diamond structure as given in [1). However, for arbitrary BA,TB, the structure
is not as regular. We show the relevant portion (i.e., where multiplication is done) of an
arbitrary systolic array in figure 3-1.

The invariant simplified the considerations of initial and boundary conditions and
data flow rates. In this particular example, we imagined that all the elements of
matrices A,B are initially placed on certain lines, though the useful work (of
multiplication) is performed in a limited region. Now we consider an example, L-U
decomposition, where such an assumption cannot be made; in fact, the goal of the algo-
rithm is to compute something akin to A,B from C.

4. L-U Decomposition of a Band Matrix

Given a band matrix A, its L-U decomposition is a pair of matrices L and U where
L is a lower diagonal matrix with 1's on diagonals and U is an upper diagonal matrix,
satisfying the following equations. (These equations are from [1] with indices renamed
and renumbered starting from 0.)

A%kl = Alik]

ANk = ik - L) X Uljk), 5>0
0 ifi<y

Lfi,j) = {1,.ifi=j -
Alli, /UG, i > 5

- " “ NN L L \-\-
1! OOCN, , e "\{: T :)" ""J- "".-“ RTINS BTt RPN O J- .r
e ‘\“;"ﬁ‘,nl‘m RTINS RO T O e “- e), ‘ SAvalA *" .‘-I‘ ""\' .)

S
P L:
10

?
.\
§ ¥ ;
1 Locus of |
P
k. W,
: i !
1
K.
» E“'
b\
‘!
s
p
J
'd
PR 4
¢ Fr‘ <
I
R
.
) &
:
o
s . .
: Figure 3-1: Relevant portion of a systolic array for multiplications of band
: {i matrices with BA= —3,TA=2,BB= —1,TB=1
4
D 0, ify>k
TR U[j’k] = { Tt ep o
S Alljk),if j< k
[\
; ! We adopt the convention that Aj[i,k] = Ali,k], for < 0. As described in the last sec-
Y tion, let BA,TA be such that Afi,j] =0 unless BA <7 —j< TA. It can be shown for
T band matrices that
¢ %
k)
. Alt,k], if(t—3>TA) or (j—k < BA)

) - et = {0 B9
AEDS Al[i,k] — L[s,5] X Ulj,k], otherwise
J
K {,_‘-, The form of computation on A suggests matrix multiplication. Hence, we attempt using
5 C% the invariant for matrix multiplication, with variables suitably renamed for this

problem. In the following invariant we have constrained certain indices because L is a
4 ‘,;3 lower diagonal and U an upper diagonal matrix.
T
"
B & —
' 1‘
[)
!
R £ AN o oS

hatedo Bk i R WL T eV T T T TR T T

11

',: Invariant:

=t+J+k =
) (G>0,8>3k>j = X[—j,j—k=L[j]) and
K- (G20,i>j5k>j = Y[i—j,j—k|=Ul5k]) and
, (620,k>0,i>4k>5 = Zli—j j— k| = Alli;}])

]

As before, we give initial conditions satisfying the invariant and show how to

k- preserve the invariant when ¢ is increased by 1. The major difference from matrix mul-

= tiplication is that L,U, unlike matrix multiplication, are not available initially and have
to be computed.

4.1. Initial Conditions

< For t =0, the first two conditions in the invariant are vacuously satisfied because
2 there are no 1,5,k satisfying these conditions. The last condition, for any ¢+ > 0, £ > 0,

can be satisfied by letting s= — (¢ + k) and hence,
.

2[2i + k, —i —2k] = Ali,k] = Ali,k] {since j < 0}

)

4.2. Preserving the Invariant

As before, we use

‘ v=t—3 and w=j7—k.
[/

It follows from the invariant that we need only consider the cases for v > 0 and w < 0.
' 4.2.1. Preserving the first condition in the invariant
" We now consider preservation of,
’ t=i+j+k and §20,i>45, k> =
1 Xlv,w] = L[i.j).
0. -
n For any #,j,t where 1+ > 7> 0 and ¢t > ¢+ 2j5: there is some (v,w), v >0, w <0 such
: that, X[v,w] = L|[s,J]. -
"
[)
‘)
N

S

R CATE TS N e R R S A0y
...... O € X t.*o, e ..' < oG N W

R iy 1o Iy TS R Ry R e " ® galanr
R P T R LN Lo ot e T P L S

.
<
.
d

il

.'\
.‘l
P

12

We now ask ourselves how this requirement is to be met. If ¢ > ¢ 4 25, L[s,5] has
already been computed and has to be assigned to the proper X[v,w]. If t =1 + 25, then
L[s,5] is to be computed and assigned to the appropriate X[v,uw).

Case 1) t > i+ 25 {equivalently, w < 0}:
Then, X[v,w] = L[¢,4].
The invariant is preserved by:

Xy, w— 1] := X[v,u]

[g g an}
oY

Case 2) t=1+2j {equivalently, w=0}:

{: The invariant is préerved by computing L|s,j] according to its defining equation
and then assigning it to the proper variable.
-
o At the following step, i.e., the (¢t + 1)"h step, the only k satisfying
g-{ t+1 = 1+5+k
isk = j+1.
¥
Hence at this step we must have I
4
&y . ’
i X[v, — 1] = L{if] :
H substituting for Lfs,j): ”
Xlv, — 1) = {Llig) = YA, A/UlGg]) ifi>5 ~ 1 ifi=j
5 From the invariant, at ¢t =1 +2j, A’[i,5] = Z[i — 5,0].
-’; Also, at t =1+ 25 {¢ > j, k=j}, UIj!J]=YI£_j70]'
Hence, the following assignment preserves the invariant {5 > j is rewritten as v > 0}:
2 |
& Xy, — 1] ;= Z[v,0}/Y[v,0] ifv>0 ~ 1 ifv=0.

&
Ak BRI e KA Sl BB

A T RN o e b A b L S T A R S R e A L R s, o R A b o B R L e A A A LA e A
‘-.:5‘.‘“&’\'-'!”.“"‘] h.\¢|;| SAWRLLERLYY " A “2’: ey gLt -A'. '(‘!.‘, < 5 T e Cel Y e " ol X ‘r 32 1) ! "

;.|

7

—"7—147
LGS0

"\l‘:.ﬂ

pens

e
i]

=

13

4.2.2. Preserving the second condition in the invariant
By similar reasoning we identify two cases.

Case 1) t > 25+ k {equivalently v > 0}:
Y[v + 1, w] :=Y[v,w]
Case 2) t=2j+ k {equivalently v=0}:
ni,wl := AY[5,k]
At t=25+k, Aj[i,k] = Z[0, j — k]. Hence,
Y[1,w] := 2Z[0,w]

4.2.3. Preserving the third condition in the invariant
From the equations,

Als.k], fs—j>TAorj—k<BA ~

A l[’.’k] =\ 4stc . . .
[¢,k) — L{$,5}XUL4,k], otherwise

By similar arguments we derive the following assignment to preserve the invariant.

Zlvw] fv>TAorw<BA ~
Zlv,w] - X[v,w]XY[v,w] ifv<TAand w> BA

Zlv—-1,w+1] :={

-’

14
ﬁ Program P2 {L-U decomposition of a band matrix}
initially : t =0,
. (forall §>0,k>0: Z[2i+k, —i— 2k = Ali,])
| ;‘3‘3 assign : (for all v,u:
» Cll Xv,w—-1] = Xlvw]ifw <0~ Z[v,0]/Y[v,0]if w=0and v>0
& ~ lifw=0and y=0

Il Yv+1,w] = Yw]ifv>0~ Z[0,w]ifv=0

|l Zlv-1,w+1] = Zvw]-Xvw]XYvw]ifv<TAand w> BA
~ Zlvw]ifv>TAor w< BA)

ift=(v—w)mod 3)

end {P2}

g il t = t+1
¢

’ 5. Discussion
ﬁ Programs P1, P2 capture the essence of the algorithms given in [1] for the cor-
responding problems. The multiple assignment statement in each program can be im-

o plemented by associating a node with each (v,w) and carrying out the operations in each
L step as given by the algorithm. The algorithm tells us that node v,w accepts inputs
along X[v,w], Y[v,w], Z[v,w] and produces results along X[v,w—1], Y[v+1,w] and
& Zlv—1,w+ 1] in each step ¢, where t = (v— w) mod 3. Some ingenious optimizations
have been applied in [1] so that only one kind of node - that receives three values A,B,C
; and computes A + BXC - may be used almost completely throughout the systolic array.
o
e
al This work is part of an ongoing project called UNITY [2,3,4] to provide a unified
- framework for the development of sequential, parallel and distributed programs. A
T thesis of UNITY is that early stages of program design should not be concerned with ar-
chitectural and programming language issues: these concerns are appropriate only for
oy later stages of design. Another thesis is that diverse applications - ranging from VLSI
& algorithms to communication protocols, from command and control systems to spread-
sheets - are programs and amenable to a common design strategy. UNITY has yet to
b give conclusive proof of these theses - but we are hopeful.
<

VLSI implementations require considerably more than an algorithmic description.
We have only addressed concerns dealing with correctness arguments 4md systematic
program development. It is straight-forward to map our programs to circuits with

et g e T R T R e N e L A G A A SRR AN R A S
n‘! sk't’?‘ﬂ. ||! .')' 4 " .‘) RO <4 & . AX ol " L~ GYEh, N My o

.
>

3 AP,
5,

TR v

chc e Ax ad

>

15

limited fan-in and where each line is directed from one node to one node. However, not
all such circuits can be implemented in VLSI.

6. References

1. H. T. Kung and Charles E. Leiserson, *Algorithms for VLSI Processor
Arrays,” (Section 8.3) Introduction to VLSI Systems, (ed. Mead and
Conway), Addison-Wesley Publishing Company, 1980.

S TR T

2. K. M. Chandy, "Concurrency for the Masses", Invited Address: Third An-
nual ACM Symposium on Principles of Distributed Computing, August 1984,
Vancouver, Canada, (appeared in Proceedings of Fourth Annual ACM Sym-
posium on Principles of Distridbuted Computing, 1985.

3 =S B

3. K. M. Chandy and J. Misra, "An Example of Stepwise Refinement of Dis-
tributed Programs: Quiescence Detection," to appear in ACM Transactions
on Programming Languages and Systems.

=3

4. K. M. Chandy and J. Misra, "Programming and Parallelism: The Proper
Perspective”, Research Report, Computer Sciences Department, University
of Texas, November 1985.

P

ﬁ 5. C. Leiserson, F. Rose, and J. Saxe, "Optimizing Synchronous Circuitry by
Retiming®, Third Caltech Conference on VLSI, (ed. R. Bryant), California
Institute of Technology, March 1983, pp. 87-1186.

6. G. J. Li, And B. W. Wah, "The Design of Optimal Systolic Arrays", IEEE
5 Transactions on Computers, C-34, No. 1, January 1985, pp. 66-77.

7. Marina C. Chen, "A Parallel Language and its Compilation to Multiproces-
sor Machines or VLSI", Research Report, Yale University, DCS-RR-432, Oc-
tober 1985.

"}
s,

. Marina C. Chen, "The Generation of a Class of Multipliers: A Synthesis
Approach to the Design of Highly Parallel Algorithms in VLSI", Research
Report, Yale University, DCS-RR-442, December 1985.

Za
o

PR AR

LA

o

8
§
"

S W W Ko U g » AT 050, Wy e I D] TN o N T R e Ry) y 0 CGON0
h'.‘:‘.,?,.;-ge, OB £ AN P K XU TR ,'r~‘,'rl !':A@af“,MZ;‘;if;" \ M‘ﬁe‘« f".te‘f ‘i.‘!ﬁti. e T AL) 5 L «'f?‘!'c‘.h‘ E‘?‘, YO0 o TN

1
i

Y
'y

BRI SO

)

] R oy \
"N, .'\.J !'f ,.n N 'lo .h‘.'o A AR ‘ !‘:‘.»5'9

' \ »‘. . .’I '."\ A .~§l"‘ v .‘

‘bb“'s e ? «“:‘h' A W

